Objective To characterize the diversity and taxonomic relative abundance of the gut microbiota in patients with never-treated, recent-onset psoriatic arthritis (PsA). Methods High-throughput 16S rRNA pyrosequencing was utilized to compare community composition of gut microbiota in PsA patients (n=16), subjects with psoriasis of the skin (Ps) (n=15) and healthy, matched-controls (n=17). Samples were further assessed for the presence and levels of fecal and serum secretory immunoglobulin A (sIgA), pro-inflammatory proteins and fatty-acids. Results The gut microbiota observed in PsA and Ps patients was less diverse when compared to healthy controls. These could be attributed to the reduced presence of several taxa. While both groups showed a relative decrease in Coprococcus spp., PsA samples were characterized by a significant reduction in Akkermansia, Ruminococcus, and Pseudobutyrivibrio. Supernatants of fecal samples from PsA patients revealed an increase in sIgA and a decrease in receptor activator of nuclear factor kappa-B ligand (RANKL) levels. Fatty acid analysis revealed low levels of hexanoate and heptanoate in PsA and Ps patients. Conclusion PsA and Ps patients had a lower relative abundance of multiple intestinal bacteria. Although some genera were concomitantly decreased in both conditions, PsA samples had lower abundance of reportedly beneficial taxa. This gut microbiota profile in PsA was similar to that published for patients with IBD and was associated with changes in specific inflammatory proteins unique to this group, and distinct from Ps and controls. Thus, the role of gut microbiota in the continuum of Ps-PsA pathogenesis and the associated immune response merits further study.
Microaspiration is a common phenomenon in healthy subjects, but its frequency is increased in chronic inflammatory airway diseases, and its role in inflammatory and immune phenotypes is unclear. We have previously demonstrated that acellular bronchoalveolar lavage samples from half of the healthy people examined are enriched with oral taxa (here called pneumotypeSPT) and this finding is associated with increased numbers of lymphocytes and neutrophils in bronchoalveolar lavage. Here, we have characterized the inflammatory phenotype using a multi-omic approach. By evaluating both upper airway and acellular bronchoalveolar lavage samples from 49 subjects from three cohorts without known pulmonary disease, we observed that pneumotypeSPT was associated with a distinct metabolic profile, enhanced expression of inflammatory cytokines, a pro-inflammatory phenotype characterized by elevated Th-17 lymphocytes and, conversely, a blunted alveolar macrophage TLR4 response. The cellular immune responses observed in the lower airways of humans with pneumotypeSPT indicate a role for the aspiration-derived microbiota in regulating the basal inflammatory status at the pulmonary mucosal surface.
ObjectiveAntibiotic (AB) usage strongly affects microbial intestinal metabolism and thereby impacts human health. Understanding this process and the underlying mechanisms remains a major research goal. Accordingly, we conducted the first comparative omic investigation of gut microbial communities in faecal samples taken at multiple time points from an individual subjected to β-lactam therapy.MethodsThe total (16S rDNA) and active (16S rRNA) microbiota, metagenome, metatranscriptome (mRNAs), metametabolome (high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry) and metaproteome (ultra high performing liquid chromatography coupled to an Orbitrap MS2 instrument [UPLC-LTQ Orbitrap-MS/MS]) of a patient undergoing AB therapy for 14 days were evaluated.ResultsApparently oscillatory population dynamics were observed, with an early reduction in Gram-negative organisms (day 6) and an overall collapse in diversity and possible further colonisation by ‘presumptive’ naturally resistant bacteria (day 11), followed by the re-growth of Gram-positive species (day 14). During this process, the maximum imbalance in the active microbial fraction occurred later (day 14) than the greatest change in the total microbial fraction, which reached a minimum biodiversity and richness on day 11; additionally, major metabolic changes occurred at day 6. Gut bacteria respond to ABs early by activating systems to avoid the antimicrobial effects of the drugs, while ‘presumptively’ attenuating their overall energetic metabolic status and the capacity to transport and metabolise bile acid, cholesterol, hormones and vitamins; host–microbial interactions significantly improved after treatment cessation.ConclusionsThis proof-of-concept study provides an extensive description of gut microbiota responses to follow-up β-lactam therapy. The results demonstrate that ABs targeting specific pathogenic infections and diseases may alter gut microbial ecology and interactions with host metabolism at a much higher level than previously assumed.
Altered interplay between gut mucosa and microbiota during treated HIV infection may possibly contribute to increased bacterial translocation and chronic immune activation, both of which are predictors of morbidity and mortality. Although a dysbiotic gut microbiota has recently been reported in HIV+ individuals, the metagenome gene pool associated with HIV infection remains unknown. The aim of this study is to characterize the functional gene content of gut microbiota in HIV+ patients and to define the metabolic pathways of this bacterial community, which is potentially associated with immune dysfunction. We determined systemic markers of innate and adaptive immunity in a cohort of HIV-infected individuals on successful antiretroviral therapy without comorbidities and in healthy non-HIV-infected subjects. Metagenome sequencing revealed an altered functional profile, with enrichment of the genes involved in various pathogenic processes, lipopolysaccharide biosynthesis, bacterial translocation, and other inflammatory pathways. In contrast, we observed depletion of genes involved in amino acid metabolism and energy processes. Bayesian networks showed significant interactions between the bacterial community, their altered metabolic pathways, and systemic markers of immune dysfunction. This study reveals altered metabolic activity of microbiota and provides novel insight into the potential host-microbiota interactions driving the sustained inflammatory state in successfully treated HIV-infected patients.
Information on how the oral microbiome develops during early childhood and how external factors influence this ecological process is scarce. We used high-throughput sequencing to characterize bacterial composition in saliva samples collected at 3, 6, 12, 24 months and 7 years of age in 90 longitudinally followed children, for whom clinical, dietary and health data were collected. Bacterial composition patterns changed through time, starting with "early colonizers", including Streptococcus and Veillonella; other bacterial genera such as Neisseria settled after 1 or 2 years of age. Dental caries development was associated with diverging microbial composition through time. Streptococcus cristatus appeared to be associated with increased risk of developing tooth decay and its role as potential biomarker of the disease should be studied with species-specific probes. Infants born by C-section had initially skewed bacterial content compared with vaginally delivered infants, but this was recovered with age. Shorter breastfeeding habits and antibiotic treatment during the first 2 years of age were associated with a distinct bacterial composition at later age. The findings presented describe oral microbiota development as an ecological succession where altered colonization pattern during the first year of life may have long-term consequences for child´s oral and systemic health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.