We develop a Lagrangian Perturbation Theory (LPT) framework to study the clustering of cold dark matter (CDM) in cosmologies with massive neutrinos. We follow the trajectories of CDM particles with Lagrangian displacements fields up to third order in perturbation theory. Once the neutrinos become non-relativistic, their density fluctuations are modeled as being proportional to the CDM density fluctuations, with a scale-dependent proportionality factor. This yields a gravitational back-reaction that introduces additional scales to the linear growth function, which is accounted for in the higher order LPT kernels. Through non-linear mappings from Eulerian to Lagrangian frames, we ensure that our theory has a well behaved large scale behavior free of unwanted UV divergences, which are common when neutrino and CDM densities are not treated on an equal footing, and in resummation schemes that manifestly break Galilean invariance. We use our theory to construct correlation functions for both the underlying matter field, as well as for biased tracers using Convolution-LPT. Redshift-space distortions effects are modeled using the Gaussian Streaming Model. When comparing our analytical results to simulated data from the Quijote 1 simulation suite, we find good accuracy down to r = 20 Mpc h −1 at redshift z = 0.5, for the real space and redshift space monopole particle correlation functions with no free parameters. The same accuracy is reached for the redshift space quadrupole if we additionally consider an
We extend the scale-dependent Gaussian Streaming Model (GSM) to produce analytical predictions for the anisotropic redshift-space correlation function for biased tracers in modified gravity models.Employing the Convolution Lagrangian Perturbation Theory (CLPT) re-summation scheme, with a local Lagrangian bias schema provided by the peak-background split formalism, we predict the necessary ingredients that enter the GSM, the real-space halo pairwise velocity and the pairwise velocity dispersion. We apply our method on two widely-considered modified gravity models, the chameleon-screened f (R) Hu-Sawicki model and the nDGP Vainshtein model and compare our predictions against state-of-the-art N-body simulations for these models.We demonstrate that the GSM approach to predict the monopole and the quadrupole of the redshift-space correlation function for halos, gives very good agreement with the simulation data, for a wide range of screening mechanisms, levels of screening and halo masses at z = 0.5 and z = 1. Our work shows the applicability of the GSM, for cosmologies beyond GR, demonstrating that it can serve as a powerful predictive tool for the next stage of cosmological surveys like DESI, Euclid, LSST and WFIRST. arXiv:1909.05261v1 [astro-ph.CO]
We develop a framework to compute the redshift space power spectrum (PS), with kernels beyond Einstein-de Sitter (EdS), that can be applied to a wide variety of generalized cosmologies. We build upon a formalism that was recently employed for standard cosmology in Chen, Vlah & White (2020), and utilize an expansion of the density-weighted velocity moment generating function that explicitly separates the magnitude of the k-modes and their angle to the line-of-sight direction dependencies. We compute the PS for matter and biased tracers to 1-loop Perturbation Theory (PT) and show that the expansion has a correct infrared and ultraviolet behavior, free of unwanted divergences. We also add Effective Field Theory (EFT) counterterms, necessary to account for small-scale contributions to PT, and employ an IR-resummation prescription to properly model the smearing of the BAO due to large scale bulk flows within Standard-PT. To demonstrate the applicability of our formalism, we apply it on the ΛCDM and the Hu-Sawicki f(R) models, and compare our numerical results against the elephant suite of N-body simulations, finding very good agreement up to k = 0.27 Mpc-1 h at z = 0.5 for the first three non-vanishing Legendre multipoles of the PS. To our knowledge, the model presented in this work is the most accurate theoretical EFT-PT for modified gravity to date, being the only one that accounts for beyond linear local biasing in redshift-space. Hence, we argue our RSD modeling is a promising tool to construct theoretical templates in order to test deviations from ΛCDM using real data obtained from the next stage of cosmological surveys such as DESI and LSST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.