Many mutations, including those that cause disease, only have a detrimental effect in a subset of individuals. The reasons for this are usually unknown, but may include additional genetic variation and environmental risk factors. However, phenotypic discordance remains even in the absence of genetic variation, for example between monozygotic twins, and incomplete penetrance of mutations is frequent in isogenic model organisms in homogeneous environments. Here we propose a model for incomplete penetrance based on genetic interaction networks. Using Caenorhabditis elegans as a model system, we identify two compensation mechanisms that vary among individuals and influence mutation outcome. First, feedback induction of an ancestral gene duplicate differs across individuals, with high expression masking the effects of a mutation. This supports the hypothesis that redundancy is maintained in genomes to buffer stochastic developmental failure. Second, during normal embryonic development we find that there is substantial variation in the induction of molecular chaperones such as Hsp90 (DAF-21). Chaperones act as promiscuous buffers of genetic variation, and embryos with stronger induction of Hsp90 are less likely to be affected by an inherited mutation. Simultaneously quantifying the variation in these two independent responses allows the phenotypic outcome of a mutation to be more accurately predicted in individuals. Our model and methodology provide a framework for dissecting the causes of incomplete penetrance. Further, the results establish that inter-individual variation in both specific and more general buffering systems combine to determine the outcome inherited mutations in each individual.
Mutations often have consequences that vary across individuals. Here, we show that the stimulation of a stress response can reduce mutation penetrance in Caenorhabditis elegans. Moreover, this induced mutation buffering varies across isogenic individuals because of interindividual differences in stress signaling. This variation has important consequences in wild-type animals, producing some individuals with higher stress resistance but lower reproductive fitness and other individuals with lower stress resistance and higher reproductive fitness. This may be beneficial in an unpredictable environment, acting as a "bet-hedging" strategy to diversify risk. These results illustrate how transient environmental stimuli can induce protection against mutations, how environmental responses can underlie variable mutation buffering, and how a fitness trade-off may make variation in stress signaling advantageous.
Selfish genetic elements spread in natural populations and have an important role in genome evolution. We discovered a selfish element causing embryonic lethality in crosses between wild strains of the nematode Caenorhabditis elegans. The element is made up of sup-35, a maternal-effect toxin that kills developing embryos, and pha-1, its zygotically expressed antidote. pha-1 has long been considered essential for pharynx development on the basis of its mutant phenotype, but this phenotype arises from a loss of suppression of sup-35 toxicity. Inactive copies of the sup-35/pha-1 element show high sequence divergence from active copies, and phylogenetic reconstruction suggests that they represent ancestral stages in the evolution of the element. Our results suggest that other essential genes identified by genetic screens may turn out to be components of selfish elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.