Most existing models for assessing the releases of engineered nanomaterials (ENMs) into the environment are based on the assumption that ENMs remain in their pristine forms during their whole life cycle. It is known, however, that this is not always the case as ENMs are often embedded into solid matrices during manufacturing and can undergo physical or chemical transformations during their life cycle, e.g. upon release to wastewater. In this work, we present a method for systematically assessing the forms in which nano-Ag and nano-TiO flow through their life cycle (i.e. production, manufacturing, use and disposal) to their points of release to air, soil and surface water. Input data on the forms of released ENMs were probability distributions based on peer-reviewed literature. Release data were incorporated into a probabilistic material flow analysis model to quantify the proportions of ENMs in product-embedded, matrix-embedded, pristine, transformed and dissolved forms in all technical and environmental compartments into which they flow, at the European scale. Releases of nano-Ag to surface water and soil were modelled to occur primarily in transformed forms (Q25 and Q75 of 34-58% and 78-86%, respectively, with means of 53% and 82%), while releases to air were mostly in pristine and matrix-embedded forms (38-46% and 36-44%, respectively, with means of 42% and 40%). In contrast, nano-TiO releases to air, soil and water were estimated to be predominantly in pristine form (75-85%, 90-95%, 96-98%, respectively, with means of 80%, 91% and 97%). The distributions of ENM releases between forms developed here will improve the representativeness and appropriateness of input data for environmental fate modelling and risk assessment of ENMs.
Nano iron oxide particles are beneficial to our daily lives through their use in paints, construction materials, biomedical imaging and other industrial fields. However, little is known about the possible risks associated with the current exposure level of engineered nano iron oxides (nano-FeOX) to organisms in the environment. The goal of this study was to predict the release of nano-FeOX to the environment and assess their risks for surface waters in the EU and Switzerland. The material flows of nano-FeOX to technical compartments (waste incineration and waste water treatment plants) and to the environment were calculated with a probabilistic modeling approach. The mean value of the predicted environmental concentrations (PECs) of nano-FeOX in surface waters in the EU for a worst-case scenario (no particle sedimentation) was estimated to be 28 ng/l. Using a probabilistic species sensitivity distribution, the predicted no-effect concentration (PNEC) was determined from ecotoxicological data. The risk characterization ratio, calculated by dividing the PEC by PNEC values, was used to characterize the risks. The mean risk characterization ratio was predicted to be several orders of magnitude smaller than 1 (1.4 × 10). Therefore, this modeling effort indicates that only a very limited risk is posed by the current release level of nano-FeOX to organisms in surface waters. However, a better understanding of the hazards of nano-FeOX to the organisms in other ecosystems (such as sediment) needs to be assessed to determine the overall risk of these particles to the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.