Topography of material surfaces is known to influence cell behavior at different levels: from adhesion up to differentiation. Different micro- and nanopatterning techniques have been employed to create patterned surfaces to investigate various aspects of cell behavior, most notably cellular mechanotransduction. Nevertheless, conventional techniques, once implemented on a specific substrate, fail in allowing dynamic changes of the topographic features. Here we investigated the response of NIH-3T3 cells to reversible topographic signals encoded on light-responsive azopolymer films. Switchable patterns were fabricated by means of a well-established holographic setup. Surface relief gratings were realized with Lloyd's mirror system and erased with circularly polarized or incoherent light. Cell cytoskeleton organization and focal adhesion assembly proved to be very sensitive to the underlying topographic signal. Thereafter, pattern reversibility was tested in air and wet environment by using temperature or light as a trigger. Additionally, pattern modification was dynamically performed on substrates with living cells. This study paves the way toward an in situ and real-time investigation of the material-cytoskeleton crosstalk caused by the intrinsic properties of azopolymers.
The exposure to visible light has been shown to exert various biological effects, such as erythema and retinal degeneration. However, the phototoxicity mechanisms in living cells are still not well understood. Here we report a study on the temporal evolution of cell morphology and volume during blue light exposure. Blue laser irradiation is switched during the operation of a digital holography (DH) microscope between what we call here "safe" and "injurious" exposure (SE & IE). The results reveal a behaviour that is typical of necrotic cells, with early swelling and successive leakage of the intracellular liquids when the laser is set in the "injurious" operation. In the phototoxicity investigation reported here the light dose modulation is performed through the very same laser light source adopted for monitoring the cell's behaviour by digital holographic microscope. We believe the approach may open the route to a deep investigation of light-cell interactions, with information about death pathways and threshold conditions between healthy and damaged cells when subjected to light-exposure. 3D Morphology and quantitative phase information from late stage of necrosis cell death.
We present single-exposure super-resolved interferometric microscopy (SESRIM) as a novel approach capable of providing one-dimensional (1-D) super-resolution (SR) imaging in holographic microscopy using a single illumination shot. The single-exposure SR working principle is achieved by combining angular and wavelength multiplexing incoming from a set of tilted beams with different wavelengths where each wavelength is tuned with the red-green-blue (RGB) channels of a color CCD. Thus, the information included in each color channel is retrieved by holographic recording using a single-color CCD capture and by analyzing the RGB channels. Finally, 1-D SR imaging is obtained after the digital postprocessing stage yielding the generation of a synthetic aperture. Experimental results are reported validating the proposed SESRIM approach while an extension of the proposed approach to the two-dimensional case is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.