The protozoans Cryptosporidium parvum and Toxoplasma gondii are parasites of major health concern to humans. Both parasites contain a group of calcium-dependent protein kinases (CDPKs), which are found in plants and ciliates but not in humans or fungi. Here we describe a series of potent inhibitors that target CDPK1 in C. parvum (CpCDPK1) and T. gondii (TgCDPK1). These inhibitors are highly selective for CpCDPK1 and TgCDPK1 over the mammalian kinases SRC and ABL. Furthermore, they are able to block an early stage of C. parvum invasion of HCT-8 host cells, which is similar to their effects on T. gondii invasion of human fibroblasts.
This work describes a proof-of-concept multiplex recombinase polymerase amplification (RPA) assay with lateral flow readout that is capable of simultaneously detecting and differentiating DNA from any of the diarrhea-causing protozoa Giardia, Cryptosporidium, and Entamoeba. Together, these parasites contribute significantly to the global burden of diarrheal illness. Differential diagnosis of these parasites is traditionally accomplished via stool microscopy. However, microscopy is insensitive and can miss up to half of all cases. DNA-based diagnostics such as polymerase chain reaction (PCR) are far more sensitive; however, they rely on expensive thermal cycling equipment, limiting their availability to centralized reference laboratories. Isothermal DNA amplification platforms, such as the RPA platform used in this study, alleviate the need for thermal cycling equipment and have the potential to broaden access to more sensitive diagnostics. Until now, multiplex RPA assays have not been developed that are capable of simultaneously detecting and differentiating infections caused by different pathogens. We developed a multiplex RPA assay to detect the presence of DNA from Giardia, Cryptosporidium, and Entamoeba. The multiplex assay was characterized using synthetic DNA, where the limits-of-detection were calculated to be 403, 425, and 368 gene copies per reaction of the synthetic Giardia, Cryptosporidium, and Entamoeba targets, respectively (roughly 1.5 orders of magnitude higher than for the same targets in a singleplex RPA assay). The multiplex assay was also characterized using DNA extracted from live parasites spiked into stool samples where the limits-of-detection were calculated to be 444, 6, and 9 parasites per reaction for Giardia, Cryptosporidium, and Entamoeba parasites, respectively. This proof-of-concept assay may be reconfigured to detect a wide variety of targets by re-designing the primer and probe sequences.
Bumped kinase inhibitors (BKIs) of Cryptosporidium parvum calcium-dependent protein kinase 1 (CpCDPK1) are leading candidates for treatment of cryptosporidiosis-associated diarrhea. Potential cardiotoxicity related to anti-human ether-à-go-go potassium channel (hERG) activity of the first-generation anti-Cryptosporidium BKIs triggered further testing for efficacy. A luminescence assay adapted for high-throughput screening was used to measure inhibitory activities of BKIs against C. parvum in vitro. Furthermore, neonatal and interferon γ knockout mouse models of C. parvum infection identified BKIs with in vivo activity. Additional iterative experiments for optimum dosing and selecting BKIs with minimum levels of hERG activity and frequencies of other safety liabilities included those that investigated mammalian cell cytotoxicity, C. parvum proliferation inhibition in vitro, anti-human Src inhibition, hERG activity, in vivo pharmacokinetic data, and efficacy in other mouse models. Findings of this study suggest that fecal concentrations greater than parasite inhibitory concentrations correlate best with effective therapy in the mouse model of cryptosporidiosis, but a more refined model for efficacy is needed.
Cryptosporidiosis is increasingly recognized as an important global health concern. While initially reported in immunocompromised such as AIDS patients, cryptosporidiosis has now been documented as a major cause of childhood diarrhea and an important factor in childhood malnutrition. Currently, nitazoxanide is the only proven anti-parasitic treatment for Cryptosporidium infections. However, it is not effective in severely immunocompromised patients and there is limited data in infants. Immune reconstitution or decreased immunosuppression is critical to therapy in AIDS and transplant patients. This limitation of treatment options presents a major public health challenge given the important burden of disease. Repurposing of drugs developed for other indications and development of inhibitors for novel targets offer hope for improved therapies, but none have advanced to clinical studies.
Cryptosporidium parasites infect intestinal cells, causing cryptosporidiosis. Despite its high morbidity and association with stunting in the developing world, current therapies for cryptosporidiosis have limited efficacy. Calcium-dependent protein kinases (CDPKs) are essential enzymes in the biology of protozoan parasites. CDPK1 was cloned from the genome of Cryptosporidium parvum, and potent and specific inhibitors have been developed based on structural studies. In this study, we evaluated the anti-Cryptosporidium activity of a novel CDPK1 inhibitor, 1294, and demonstrated that 1294 significantly reduces parasite infection in vitro, with a half maximal effective concentration of 100 nM. Pharmacokinetic studies revealed that 1294 is well absorbed, with a half-life supporting daily administration. Oral therapy with 1294 eliminated Cryptosporidium parasites from 6 of 7 infected severe combined immunodeficiency-beige mice, and the parasites did not recur in these immunosuppressed mice. Mice treated with 1294 had less epithelial damage, corresponding to less apoptosis. Thus, 1294 is an important lead for the development of drugs for treatment of cryptosporidiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.