Electrical industry uses oils for cooling and insulation of several machines, such as power transformers. In addition, it uses water for cooling some synchronous generators. To avoid malfunctions in these assets, fluid quality should be preserved. To contribute to this aim, a sensor that detects changes in fluid composition is presented. The designed sensor is like a single-phase transformer whose magnetic core is the fluid whose properties will be measured. The response of this device to a frequency sweep is recorded. Through a comparison between any measurement and a reference one corresponding to a healthy state, pollutants presence, such as water in oil or salt in water, can be measured. The performance of the sensor was analyzed through simulation. In addition, a prototype was built and tested measuring water concentration in oil and salt content in water. The correlation between pollutant concentration measured with the sensor and known pollutant concentrations is good.
Crab crossing is essential for high-luminosity colliders. The High Luminosity Large Hadron Collider (HL-LHC) will equip one of its Interaction Points (IP1) with Double-Quarter Wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting RF cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is provided by its fundamental mode. Each HL-LHC DQW cavity shall provide a nominal deflecting voltage of 3.4 MV, although up to 5.0 MV may be required. A Proof-of-Principle (PoP) DQW cavity was limited by quench at 4.6 MV. This paper describes a new, highly optimized cavity, designated DQW SPS-series, which satisfies dimensional, cryogenic, manufacturing and impedance requirements for beam tests at SPS and operation in LHC. Two prototypes of this DQW SPS-series were fabricated by US industry and cold tested after following conventional SRF surface treatment. Both units outperformed the PoP cavity, reaching a deflecting voltage of 5.3-5.9 MV. This voltage -the highest reached by a DQW cavity -is well beyond the nominal voltage of 3.4 MV and may even operate at the ultimate voltage of 5.0 MV with sufficient margin. This paper covers fabrication, surface preparation and cryogenic RF test results and implications.
Studies of the crab cavities at KEKB revealed that the RF phase could shift by up to 50 • within ∼50 µs during a quench; while the cavity voltage is still at approximately 75% of its nominal amplitude. If such a failure were to occur on the HL-LHC crab cavities, it is likely that the machine would sustain substantial damage to the beam line and surrounding infrastructure due to uncontrolled beam loss before the machine protection system could dump the beam. We have developed a low-level RF system model, including detuning mechanisms and beam loading, and use this to simulate the behaviour of a crab cavity during a quench, modeling the low-level RF system, detuning mechanisms and beam loading. We supplement this with measurement data of the actual RF response of the proof of principle Double-Quarter Wave Crab Cravity during a quench. Extrapolating these measurements to the HL-LHC, we show that Lorentz Force detuning is the dominant effect leading to phase shifts in the crab cavity during quenches; rather than pressure detuning which is expected to be dominant for the KEKB crab cavities. The total frequency shift for the HL-LHC crab cavities during quenches is expected to be about 460 Hz, leading to a phase shift of no more than 3 • . The results of the quench model are read into a particle tracking simulation, SixTrack, and used to determine the effect of quenches on the HL-LHC beam. The quench model has been benchmarked against the KEKB experimental measurements. In this paper we present the results of the simulations on a crab cavity failure for HL-LHC as well as for the SPS and show that beam loss is negligible when using a realistic low-level RF response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.