Abstract:In recent years, the interpretation of our observations of animal behaviour, in particular that of cetaceans, has captured a substantial amount of attention in the scientific community. The traditional view that supports a special intellectual status for this mammalian order has fallen under significant scrutiny, in large part due to problems of how to define and test the cognitive performance of animals. This paper presents evidence supporting complex cognition in cetaceans obtained using the recently developed intelligence and embodiment hypothesis. This hypothesis is based on evolutionary neuroscience and postulates the existence of a common information-processing principle associated with nervous systems that evolved naturally and serves as the foundation from which intelligence can emerge. This theoretical framework explaining animal intelligence in neural computational terms is supported using a new mathematical model. Two pathways leading to higher levels of intelligence in animals are identified, each reflecting a trade-off either in energetic requirements or the number of neurons used. A description of the evolutionary pathway that led to increased cognitive capacities in cetacean brains is detailed and evidence supporting complex cognition in cetaceans is presented. This paper also provides an interpretation of the adaptive function of cetacean neuronal traits.
Recursive Neural Networks are non-linear adaptive models that are able to learn deep structured information. However, these models have not yet been broadly accepted. This fact is mainly due to its inherent complexity. In particular, not only for being extremely complex information processing models, but also because of a computational expensive learning phase. The most popular training method for these models is back-propagation through the structure. This algorithm has been revealed not to be the most appropriate for structured processing due to problems of convergence, while more sophisticated training methods enhance the speed of convergence at the expense of increasing significantly the computational cost. In this paper, we firstly perform an analysis of the underlying principles behind these models aimed at understanding their computational power. Secondly, we propose an approximate second order stochastic learning algorithm. The proposed algorithm dynamically adapts the learning rate throughout the training phase of the network without incurring excessively expensive computational effort. The algorithm operates in both on-line and batch modes. Furthermore, the resulting learning scheme is robust against the vanishing gradients problem. The advantages of the proposed algorithm are demonstrated with a real-world application example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.