Akt signaling plays a central role in many biological functions, such as cell proliferation and apoptosis. Since Akt resides primarily in the cytosol, it is not known how these signaling molecules are recruited to the plasma membrane and subsequently activated by growth factor stimuli. Here, we found that the protein kinase Akt undergoes lysine 63 chain ubiquitination, which is important for Akt membrane localization and phosphorylation. TRAF6 was found to be a direct E3 ligase for Akt and was essential for Akt ubiquitination, membrane recruitment, and phosphorylation upon growth-factor stimulation. The human cancer-associated Akt mutant (E17K) displayed an increase in Akt ubiquitination, in turn contributing to the enhancement of Akt membrane localization and phosphorylation. Thus, Akt ubiquitination is an important step for oncogenic Akt activation.
TRAF6 mediates Lys63 (K63)-linked polyubiquitination for NF-κB activation via its N-terminal RING and zinc finger domains. Here we report the crystal structures of TRAF6 and its complex with the ubiquitin conjugating enzyme (E2) Ubc13. The RING and zinc fingers of TRAF6 assume a rigid, strikingly elongated structure. Interaction of TRAF6 with Ubc13 involves direct contacts of the RING and the preceding residues while the first zinc finger plays a structural role. Surprisingly, this region of TRAF6 is dimeric both in the crystal and in solution, different from the trimeric C-terminal TRAF domain. Structure-based mutagenesis reveals that TRAF6 dimerization is critical for polyubiquitin synthesis and auto-ubiquitination. Fluorescence energy transfer analysis shows that TRAF6 dimerization induces higher order oligomerization of full-length TRAF6. The mismatch of dimeric and trimeric symmetry may provide a mode of infinite oligomerization that facilitates liganddependent signal transduction of many immune receptors.Tumor necrosis factor (TNF) receptor associated factors (TRAFs) play important roles in intracellular signal transduction of many receptor families such as the TNF receptor superfamily, the IL-1 receptors (IL-1R), the Toll-like receptors (TLR), T-cell receptors (TCR) and B-cell receptors (BCR) 1,2 . Upon receptor activation, TRAFs are directly or indirectly recruited to the intracellular domains of these receptors. They subsequently engage other signaling proteins to activate the inhibitor of κB (IκB) kinase (IKK) and MAP kinases, leading ultimately to activation of transcription factors such as NF-κB and AP-1 to induce immune and inflammatory responses and confer protection from apoptosis.Most TRAFs contain an N-terminal domain with RING (really interesting gene) and a variable number of zinc fingers and a C-terminal TRAF domain that comprises a coiled coil domain and a conserved TRAF-C domain (Fig. 1a) NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscriptrevealed that the TRAF domain forms a mushroom-shaped trimeric structure with the TRAF-C domain as the head for interaction with receptors and adaptor proteins and the coiled coil domain as the stalk for trimerization [3][4][5] . Remarkably, TRAF6 is uniquely pleiotropic in participating in the signal transduction of many receptor systems while TRAF2, TRAF3 and TRAF5 appear to signal only within the TNF receptor superfamily 5 .The downstream signaling mechanism of TRAFs was first revealed from biochemical and cellular studies of TRAF6 to show the involvement of K63-linked polyubiquitination [6][7][8] . Ubiquitination is one of the most prevalent post-translational modifications 9 . It is accomplished in three steps, 1) ATP-dependent attachment of ubiquitin (Ub) via a thioester bond to a Ub activating enzyme (E1), 2) transfer of Ub from E1 to the active site Cys of a Ub conjugating enzyme (E2), and 3) transfer of Ub from the E2 active site to Lys residues of substrates (including other molecules of Ub) with the aid of a Ub lig...
Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) is a key mediator in proximal signaling of the interleukin-1/Toll-like receptor and the TNF receptor superfamily. Analysis of TRAF6-deficient mice revealed a fundamental role of TRAF6 in osteoclastogenesis; however, the molecular mechanism underlying TRAF6 signaling in this biological process is not understood. Recent biochemical evidence has indicated that TRAF6 possesses ubiquitin ligase activity that controls the activation of IKK and NF-B. Because these studies are primarily based on cell-free systems, the role of the ubiquitin ligase activity of TRAF6 and its auto-ubiquitination to initiate the NF-B pathway in vivo remain elusive. Here we show that an intact RING domain of TRAF6 in conjunction with the E2 enzyme Ubc13/Uev1A is necessary for Lys-63-linked auto-ubiquitination of TRAF6 and for its ability to activate IKK and NF-B. Furthermore, a RING mutant of TRAF6 abolishes its ability to induce receptor activator of NF-B-independent osteoclast differentiation and nuclear accumulation of the transcription factor NFATc1. Notably, we map the auto-ubiquitination site of TRAF6 to a single Lys residue, which if mutated renders TRAF6 unable to activate transforming growth factor--activated kinase 1 and IKK and to cause spontaneous osteoclast differentiation. Additionally, we provide biochemical and in vivo evidence that TRAF6 serves as an E3 to directly ubiquitinate NEMO. Reconstituting TRAF6-deficent cells with various TRAF6 mutants, we clearly demonstrate the requirement for the TRAF6 RING domain and site-specific auto-ubiquitination of TRAF6 to activate IKK in response to interleukin-1. These data establish a signaling cascade in which regulated site-specific Lys-63-linked TRAF6 auto-ubiquitination is the critical upstream mediator of IKK.The pro-inflammatory cytokines interleukin-1 (IL-1) 2 and tumor necrosis factor (TNF) elicit a critical function in the innate immune response. Following receptor activation, these cytokines induce a cascade of signaling events leading to the activation of transcription factors such as NF-B and AP1 through upstream kinases, including IB kinase (IKK) and the mitogen-activated protein kinases (MAPKs; JNK, p38, and ERK). These events culminate in the expression and regulation of numerous pro-inflammatory genes (1, 2).TNF receptor-associated factors (TRAFs) constitute a family of seven known adaptor proteins, and most of them participate in activation of the transcription factor NF-B and members of the MAPKs (3-5). Several TRAF proteins interact directly with the intracellular regions of various members of the TNF receptor family through a highly conserved motif at their C terminus termed the TRAF domain. In contrast, the N-terminal domain of the TRAFs is less well conserved but consists of zinc finger motifs and in some TRAFs a RING (really interesting new gene) domain, which has been identified in a number of E3 ubiquitin ligases (6).Recently, the N-terminal RING domain of TRAF6 has been included in a growing fami...
Transforming growth factor -activated kinase 1 (TAK1), a member of the MAPKKK family, was initially described to play an essential role in the transforming growth factor -signaling pathway, but recent evidence has emerged implicating TAK1 in the interleukin (IL)-1 and tumor necrosis factor (TNF) pathways. Notably, two homologous proteins, TAB2 and TAB3, have been identified as adaptors linking TAK1 to the upstream adaptors TRAFs. However, it remains unclear whether the interaction between TAB2/TAB3 and TAK1 is necessary for its kinase activation and subsequent activation of the IKK and MAPK pathways. Here, we characterized the TAB2/TAB3-binding domain in TAK1 and further examined the requirement of this interaction for IL-1, TNF, and RANKL signaling. Through deletion mapping experiments, we demonstrated that the binding motif for TAB2/TAB3 is a non-contiguous region located within the last C-terminal 100 residues of TAK1. However, residues 479 -553 of TAK1 appear to be necessary and sufficient for TAB2/TAB3 interaction. Conversely, residues 574 -693 of TAB2 were shown to interact with TAK1. A green fluorescent protein fusion protein containing the last 100 residues of TAK1 (TAK1-C100) abolished the interaction of endogenous TAB2/TAB3 with TAK1, the phosphorylation of TAK1, and prevented the activation of IKK and MAPK induced by IL-1, TNF, and RANKL. Furthermore, TAK1-C100 blocked RANKL-induced nuclear accumulation of NFATc1 and consequently osteoclast differentiation consistent with the ability of a catalytically inactive TAK1 to block RANKL-mediated signaling. Significantly, our study provides evidence that the TAB2/TAB3 interaction with TAK1 is crucial for the activation of signaling cascades mediated by IL-1, TNF, and RANKL.
Tumor necrosis factor receptor-associated factor 6 (TRAF6), the crucial adaptor molecule of receptor activator of NF-κB (RANK), plays an essential role in governing the formation of multi-nucleated osteoclasts. TRAF6 is a RING-dependent ubiquitin (Ub) ligase that in conjunction with Ubc13/ Uev1A catalyzes its own auto-ubiquitination via Lys63-linked poly-Ub chains. While the receptoradaptor function of TRAF6 in RANK signaling is well understood, the significance of its Ub ligase activity in this process remains largely unknown. In this study, we show that retroviral expression of TRAF6, but not a RING mutant of TRAF6 was able to rescue TRAF6-deficient monocytes for the activation of IKK and osteoclast differentiation by RANKL. Furthermore, a catalytically inactive Ubc13 or stable knockdown of Ubc13 significantly prevents RANK-mediated TRAF6 ubiquitination and NF-κB and JNK activation. These data establish a signaling cascade in which regulated Lys63-linked TRAF6 auto-ubiquitination is the critical upstream mediator of osteoclast differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.