Less than 20% of the protein coding genome is thought to be targetable using small molecules. mRNA therapies are not limited in the same way since in theory, they can silence or edit any gene by encoding CRISPR nucleases, or alternatively, produce any missing protein. Yet not all mRNA therapies are equally likely to succeed. Over the past several years, an increasing number of clinical trials with siRNA-and antisense oligonucleotide-based drugs have revealed three key concepts that will likely extend to mRNA therapies delivered by nonviral systems. First, scientists have come to understand that some genes make better targets for RNA therapies than others. Second, scientists have learned that the type and position of chemical modifications made to an RNA drug can alter its therapeutic window, toxicity, and bioavailability. Third, scientists have found that safe and targeted drug delivery vehicles are required to ferry mRNA therapies into diseased cells. In this study, we apply these learnings to cystic fibrosis (CF). We also describe lessons learned from a subset of CF gene therapies that have already been tested in patients. Finally, we highlight the scientific advances that are still required for nonviral mRNA-or CRISPR-based drugs to treat CF successfully in patients.
The biological pathways that affect drug delivery in vivo remain poorly understood. We hypothesized that altering cell metabolism with phosphatidylinositol (3,4,5)-triphosphate (PIP3), a bioactive lipid upstream of the metabolic pathway PI3K (phosphatidylinositol 3-kinase)/AKT/ mTOR (mammalian target of rapamycin) would transiently increase protein translated by nanoparticle-delivered messenger RNA (mRNA) since these pathways increase growth and proliferation. Instead, we found that PIP3 blocked delivery of clinically-relevant lipid nanoparticles (LNPs) across multiple cell types in vitro and in vivo. PIP3-driven reductions in LNP delivery were not caused by toxicity, cell uptake, or endosomal escape. Interestingly, RNA sequencing and metabolomics analyses suggested an increase in basal metabolic rate. Higher transcriptional activity and mitochondrial expansion led us to formulate two competing hypotheses that explain the reductions in LNP-mediated mRNA delivery. First, PIP3 induced consumption of limited cellular resources, “drowning out” exogenously-delivered mRNA. Second, PIP3 triggers a catabolic response that leads to protein degradation and decreased translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.