The performance of snake melon [Cucumis melo var. flexuosus (L.)] in organic farming was studied under high biotic and salt stress conditions. Soilborne diseases (mainly caused by Macrophomina phaseolina and Neocosmospora falciformis), combined with virus incidence [Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), and Tomato leaf curl New Delhi virus (ToLCNDV)] and Podosphaera xanthii attacks, reduced yield by more than 50%. Snake melon susceptibility to M. phaseolina and Monosporascus cannonballus was proved in pathogenicity tests, while it showed some degree of resistance to Neocosmospora keratoplastica and N. falciformis. On the contrary, salt stress had a minor impact, although a synergic effect was detected: yield losses caused by biotic stress increased dramatically when combined with salt stress. Under biotic stress, grafting onto the melon F1Pat81 and wild Cucumis rootstocks consistently reduced plant mortality in different agroecological conditions, with a better performance compared to classic Cucurbita commercial hybrids. Yield was even improved under saline conditions in grafted plants. A negative effect was detected, though, on consumer acceptability, especially with the use of Cucurbita rootstocks. Cucumis F1Pat81 rootstock minimized this side effect, which was probably related to changes in the profile of sugars, acids, and volatiles. Grafting affected sugars and organic acid contents, with this effect being more accentuated with the use of Cucurbita rootstocks than with Cucumis. In fact, the latter had a higher impact on the volatile organic compound profile than on sugar and acid profile, which may have resulted in a lower effect on consumer perception. The use of Cucumis rootstocks seems to be a strategy to enable organic farming production of snake melon targeted to high-quality markets in order to promote the cultivation of this neglected crop.
The cliff rose (Armeria maritima), like other halophytes, has a phenolics-based antioxidant system that allows it to grow in saline habitats. Provided that antioxidant properties are usually accompanied by antimicrobial activity, in this study we investigated the phytochemicals present in a hydromethanolic extract of A. maritima flowers and explored its antifungal potential. The main phytocompounds, identified by gas chromatography–mass spectrometry, were: hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, 3-(3,4-dihydroxy-phenyl)-acrylic acid ethyl ester, and benzeneacetaldehyde. The antifungal activity of the extract and its main constituents—alone and in combination with chitosan oligomers—was tested against six pathogenic taxa associated with soil-borne diseases of plant hosts in the family Cucurbitaceae: Fusarium equiseti, F. oxysporum f. sp. niveum, Macrophomina phaseolina, Neocosmospora falciformis, N. keratoplastica, and Sclerotinia sclerotiorum. In in vitro tests, EC90 effective concentrations in the 166−865 μg·mL−1 range were obtained for the chitosan oligomers–A. maritima extract conjugate complexes, lower than those obtained for fosetyl-Al and azoxystrobin synthetic fungicides tested for comparison purposes, and even outperforming mancozeb against F. equiseti. In ex situ tests against S. sclerotiorum conducted on artificially inoculated cucumber slices, full protection was achieved at a dose of 250 μg·mL−1. Thus, the reported results support the valorization of A. maritima as a source of biorationals for Cucurbitaceae pathogens protection, suitable for both organic and conventional agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.