This version is available at https://strathprints.strath.ac.uk/18569/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the ABSTRACTThe population of Calanus finmarchicus in the North Sea is replenished each spring by invasion from an overwintering stock located beyond the shelf edge. A combination of field observations, statistical analysis of Continuous Plankton Recorder (CPR) data, and particle tracking model simulations, was used to investigate the processes involved in the cross-shelf invasion. The results showed that the main source of overwintering animals entering the North Sea in the spring is at depths of greater than 600 m in the Faroe Shetland Channel, where concentrations of up to 620 m 73 are found in association with the overflow of Norwegian Sea Deep Water (NSDW) across the Iceland Scotland Ridge. The input of this water mass to the Faroe Shetland Channel, and hence the supply of overwintering C. finmarchicus, has declined since the late 1960s due to changes in convective processes in the Greenland Sea. Beginning in February, animals start to emerge from the overwintering state and migrate to the surface waters, where their transport into the North Sea is mainly determined by the incidence of north-westerly winds that have declined since the 1960s. Together, these two factors explain a high proportion of the 30-year trends in spring abundance in the North Sea as measured by the CPR survey. Both the regional winds and the NSDW overflow are connected to the North Atlantic Oscillation Index (NAO), which is an atmospheric climate index, but with different time scales of response. Thus, interannual fluctuations in the NAO can cause immediate changes in the incidence of northwesterly winds without leading to corresponding changes in C. finmarchicus abundance in the North Sea, because the NSDW overflow responds over longer (decadal) time scales.
Arrival times for the P waves were determined via a multi-channel cross-correlation procedure that makes use of the duplicate information obtained by cross-correlating all possible pairs of waveforms (VanDecar and Crosson, 1990; VanDecar et al., 2003). This procedure produces both
Payne, M. R., Hatfield, E. M. C., Dickey-Collas, M., Falkenhaug, T., Gallego, A., Gröger, J., Licandro, P., Llope, M., Munk, P., Röckmann, C., Schmidt, J. O., and Nash, R. D. M. 2009. Recruitment in a changing environment: the 2000s North Sea herring recruitment failure. – ICES Journal of Marine Science, 66: 272–277. Environmentally induced change appears to be impacting the recruitment of North Sea herring (Clupea harengus). Despite simultaneously having a large adult population, historically low exploitation, and Marine Stewardship Council accreditation (implying sustainability), there have been an unprecedented 6 sequential years of poor juvenile production (recruitment). Analysis suggests that the poor recruitment arises during the larval overwintering phase, with recent survival rates greatly reduced. Contemporary warming of the North Sea has caused significant changes in the plankton community, and a recently identified regime shift around 2000 shows close temporal agreement with the reduced larval survival. It is, therefore, possible that we are observing the first consequences of this planktonic change for higher trophic levels. There is no indication of a recovery in recruitment in the short term. Fishing mortality is currently outside the agreed management plan, and forecasts show a high risk of the stock moving outside safe biological limits soon, potentially precipitating another collapse of the stock. However, bringing the realized fishing mortality back in line with the management plan would likely alleviate the problem. This illustrates again that recruitment is influenced by more than just spawning-stock biomass, and that changes in other factors can be of equal, or even greater, importance. In such dynamically changing environments, recent management success does not necessarily guarantee future sustainability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.