This paper describes a systematic approach to suppressing cardiac alternans in simulated Purkinje fibers using localized current injections. We investigate the controllability and observability of the periodically paced Noble model for different locations of the recording and control electrodes. In particular, we show that the loss of controllability causes the failure of the control approach introduced by Echebarria and Karma [Chaos 12, 923 (2002)] for longer fiber lengths. Furthermore, we explain how the optimal locations for the recording and control electrodes and the timing of the feedback current can be selected, accounting for both linear and nonlinear effects, effectively doubling the length of fibers that can be controlled with previous methods.
Cardiac alternans, a beat-to-beat alternation of cardiac electrical dynamics, and ventricular tachycardia, generally associated with a spiral wave of electrical activity, have been identified as frequent precursors of the life-threatening spatiotemporally chaotic electrical state of ventricular fibrillation (VF). Schemes for the elimination of alternans and the stabilization of spiral waves through the injection of weak external currents have been proposed as methods to prevent VF but have not performed at the level required for clinical implementation. In this paper we propose a control method based on linear-quadratic regulator (LQR) control. Unlike most previously proposed approaches, our method incorporates information from the underlying model to increase efficiency. We use a one-dimensional ringlike geometry, with a single control electrode, to compare the performance of our method with that of two other approaches, quasi-instantaneous suppression of unstable modes (QISUM) and time-delay autosynchronization (TDAS). We find that QISUM fails to suppress alternans due to conduction block. Although both TDAS and LQR succeed in suppressing alternans, LQR is able to suppress the alternans faster and using a much weaker control current. Our results highlight the benefits of a model-based control approach despite its inherent complexity compared with nonmodel-based control such as TDAS.
Alternans-an arrhythmic response of cardiac tissue to periodic pacing-often serves as a precursor to a more dangerous, and potentially lethal, state of fibrillation. Suppression of alternans using feedback control may be a plausible method to prevent fibrillation. Several approaches based on impulsive control have been proposed previously, where feedback is applied for a brief instance of time during each pacing interval. This paper presents a continuous-time approach, where feedback current is applied at all times, which is capable of suppressing alternans in fibers of significantly greater length (up to at least 4 cm), compared with impulsive control (less than 1 cm), and for a wide range of pacing cycle lengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.