New hybrid semi-interpenetrating proton-conducting membranes were obtained using sulfonated polystyrene (SPS) and inorganic-organic polysiloxane phases with the aim of improving the mechanical and thermal characteristics of the pristine polymer and to study the effects of crosslinking in the latter phase in several of their properties, mainly proton conductivity. Siloxane phases were prepared using poly(dimethylsiloxane) (PDMS) and PDMS with tetraethoxysilane (TEOS) or phenyltrimethoxysilane (PTMS) as crosslinking agents. To study the crosslinking effect, membranes were prepared with different TEOS:PDMS and PTMS:PDMS mole ratios. The films obtained were characterized by FTIR, 29 Si-HPDEC MAS-NMR, 13 C-CP-MAS NMR, elemental and thermal analyses. Certain properties, such as water uptake (WU), ion exchange capacity (IEC) and the state of the water, were determined. The proton conductivity was measured at different temperatures (30°C and 80°C) and relative humidities (50-95%). The water content of the hybrid membranes declined significantly, compared with the SPS membranes, depending on the nature and amount of siloxane phase added. Nonetheless, the conductivity values remained relatively high (>100 mS cm À1 at 80°C and 95% RH) when compared to Nafion®117 presumably because of the formation of well developed proton channels, which makes them potentially promising as proton exchange membranes for fuel cells. These membranes proved to be thermally stable up to 350°C. Scanning electron microscopy (SEM) and scanning electrochemical microscopy (SECM) were used to characterize the hybrid membranes microstructures; the latter provided contrast for the conductive domains. a IEC calculated from % S. b IEC determined by acid-base titration. c Calculated using formal IEC. ND not determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.