Diplodocids are by far the most emblematic sauropod dinosaurs. They are part of Diplodocoidea, a vast clade whose other members are well-known from Jurassic and Cretaceous strata in Africa, Europe, North and South America. However, Diplodocids were never certainly recognized from the Cretaceous or in any other southern land mass besides Africa. Here we report a new sauropod, Leikupal laticauda gen. et sp. nov., from the early Lower Cretaceous (Bajada Colorada Formation) of Neuquén Province, Patagonia, Argentina. This taxon differs from any other sauropod by the presence of anterior caudal transverse process extremely developed with lateroventral expansions reinforced by robust dorsal and ventral bars, very robust centroprezygapophyseal lamina in anterior caudal vertebra and paired pneumatic fossae on the postzygapophyses in anterior-most caudal vertebra. The phylogenetic analyses support its position not only within Diplodocidae but also as a member of Diplodocinae, clustering together with the African form Tornieria, pushing the origin of Diplodocoidea to the Middle Jurassic or even earlier. The new discovery represents the first record of a diplodocid for South America and the stratigraphically youngest record of this clade anywhere.
Dicraeosaurids are a group of sauropod dinosaurs characterized by a distinctive vertebral column with paired, long, neural spines, present in an extreme fashion in the South American form Amargasaurus cazaui. This distinctive morphology has been interpreted as a support structure for a thermoregulatory sail, a padded crest for display, a dorsal hump acting as fat reservoir, and even as inner cores for dorsal horns. Other inferred functions (if any) of this structure were related to sexual display and/or defense strategies. Here we describe a new dicraeosaurid sauropod, Bajadasaurus pronuspinax gen. et sp. nov., from Patagonia which preserves the most complete skull of the group and has extremely elongate bifid cervical neural spines that point permanently forward, irrespective of the neck position. Although much shorter versions of this neural spine configuration were already recorded for other dicraeosaurid taxa, the long, anteriorly bent spines of this new dinosaur support the hypothesis that these elongate spines of dicraeosaurid sauropods served as passive defense structures.
2012): Changes in vertebral laminae across the cervicodorsal transition of a well-preserved rebbachisaurid (Dinosauria, Sauropoda) from the Cenomanian of Patagonia, Argentina, Journal of Vertebrate Paleontology, 32:1, 219-224 To link to this article: http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.