Polymer inclusion membranes containing cellulose triacetate as support, Ionquest® 801 ((2–ethylhexyl acid) -mono (2–ethylhexyl) phosphonic ester) as extractant, and 2NPOE (o–nitrophenyl octyl ether) or TBEP (tri (2–butoxyethyl phosphate)) as plasticizers were characterized using several instrumental techniques (Fourier Transform Infrared Spectroscopy (FT–IR), Reflection Infrared Mapping Microscopy (RIMM), Electrochemical Impedance Spectroscopy (EIS), Differential Scanning Calorimetry (DSC)) with the aim of determining physical and chemical parameters (structure, electric resistance, dielectric constant, thickness, components’ distributions, glass transition temperature, stability) that allow a better comprehension of the role that the plasticizer plays in PIMs designed for In(III) transport. In comparison to TBEP, 2NPOE presents less dispersion and affinity in the PIMs, a plasticizer effect at higher content, higher membrane resistance and less permittivity, and a pronounced drop in the glass transition temperature. However, the increase in permittivity with In (III) sorption is more noticeable and, in general, PIMs with 2NPOE present higher permeability values. These facts indicate that In (III) transport is favored in membranes with chemical environment of high polarity and efficiently plasticized. A drawback is the decrease in stability because of the minor affinity among the components in 2NPOE–PIMs.
Polymer inclusion membranes (PIMs) are developed to be used as colorimetric sensors for the simultaneous determination and quantification of Cu(II), Zn(II), Pb(II) from aqueous solutions using chemometric methods. Different physical and chemical factors that influence the detection process of the analytes are studied, i.e., the concentration of the metal cation, the amount of membrane, and the pH of the solution. The most significant variables within the detection process in membrane sensors are those that are closely related to the chemical reaction of the detection, that is, the concentration of the metal cation and the number of active sites available in the optomembrane. The reversibility and durability of the signal are evaluated as well. The optomembrane reaches 95% of the optical signal attributed to the process of formation of the different colorful complexes in 20 min, regardless of the metal cation. The optomembrane of CTA—TEHP—PAN presents a very narrow linear interval of response to the concentration of the cations, Zn(II) and Cu(II) ranging from 0.6 to 6 ppm; for higher concentrations the polymeric detector presents saturation. The response of the sensor to different concentrations of Pb(II) is not linear, which can be attributed to the lack of chemical affinity to generate the complex in the polymer film. The simultaneous determination of the three metal cations by three chemometric methods [multivariate curve resolution (MCR), artificial neural networks (ANNs) and partial least squares (PLS)] is performed with an experimental central composite design matrix at five levels and three experimental factors. The construction of the quantification model is carried out from the information obtained from the VIS spectrum of the PIMs exposed to the aqueous solutions. The predictive power of the quantification models for each of the metal cations is evaluated contemplating the determination coefficient (R2) and the root mean square error (RMSE) values. Results favors the use of the PLS algorithm, although due to the competition for the actives sites of the chromophore, Pb(II) determination is not satisfactorily acomplished. Principal component analysis (PCA) is in addition employed to visualize patterns in the synthesized membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.