In this work, we demonstrate that the forbidden oxirane-type
photoproduct
(the cyclopropyl ketone photoproduct is the allowed one) of the oxa-di-π-methane
photorearrangement can be obtained by mechanochemical control of the
photoreactions. This control is achieved by the application of simple
force pairs rationally chosen. By analyzing in detail the effect of
the applied forces on this photoreaction, it comes to light that the
mechanical action affects the diverse properties of the oxa-di-π-methane
rearrangement, modifying all the steps of the reaction: (i) the initial
ground-state conformers’ distribution becomes affected; (ii)
the new conformational population makes the triplet excitation process
to be changed, responding to the magnitude of the applied force; (iii)
the stability of the different intermediates along the triplet pathway
also becomes affected, changing the dynamical behavior of the system
and the reaction kinetics; and (iv) the intersystem crossing also
becomes strongly affected, making the forbidden oxirane-type photoproduct
to decay more efficiently to the ground state. All these changes provide
a complex scenario where a detailed study of the effect of applied
forces is necessary in order to predict its overall effect on the
photoreactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.