_____________________________________________________________________________________ Resumen:Actualmente en Honduras existe una deficiencia en la detección de líneas telefónicas utilizadas para tráfico gris en redes GSM, debido a la variabilidad de los factores principales considerados y la rigidez de los métodos tradicionales de detección. El presente estudio tiene como propósito conocer factores característicos de líneas telefónicas utilizadas para tráfico gris en Honduras, con la finalidad de utilizar el conocimiento de dicho perfil para la detección de casos de fraude mediante una red neuronal con aprendizaje supervisado. Los resultados del estudio se presentan de forma separada para el enfoque cualitativo y cuantitativo, de forma que se comprendan los factores más significativos encontrados en cada análisis. Con la caracterización tanto del perfil de línea telefónica de tráfico gris como de línea telefónica legal, se procedió a construir un modelo de red neuronal con un 99% de efectividad de detección, y para efectos prácticos de aplicabilidad se describen las bases para la posterior construcción de un modelo de detección de tráfico gris.Palabras Claves: Perceptrón multicapa, Red GSM, Red neuronal, Tráfico gris. Abstract:Honduras currently suffers a deficiency in detection of mobile phone lines used for bypass fraud in GSM networks, due to the variable nature of the main factors considered, and the inflexibility of traditional detection methods. This study aims to find determinant factors of telephone lines used for bypass fraud, in order to use this knowledge to detect these cases through the use of a neural network with supervised learning. The results of this study are presented separately for the qualitative and quantitative approach, for a better understanding of the most significant factors discovered. With the characterization of user profiles for both the bypass telephone line and the legal telephone line, the study proceeds to build a neural network model with 99% detection efficiency, and for applicability matters, the basic considerations that need to be taken into account are described for the subsequent construction of a bypass detection model.
The real-time control systems industry is moving towards the consolidation of multiple computing systems into fewer and more powerful ones, aiming for a reduction in size, weight, and power. The increasing demand for higher performance in other critical domains like autonomous driving has led the industry to recently include embedded GPUs for the implementation of advanced functionalities. The highly parallel architecture of GPUs could also be leveraged in the control systems industry to develop more advanced, energy-efficient, and scalable control systems. However, the closed-source and non-deterministic nature of GPUs complicates the resource provisioning analysis required for the implementation of critical real-time systems. On the other hand, there is no indication of the integration of GPUs in the traditional development cycle of control systems, which is oriented to the use of a model-based design approach. Recently, some model-based design tools vendors have extended their development frameworks with GPU code generation capabilities targeting hybrid computing platforms, so that the model-based design environment now enables the concurrent analysis of more complex and diverse functions by simulation and automating the deployment to the final target. However, there is no indication whether these tools are well-suited for the design and development of time-sensitive systems. Motivated by these challenges, in this thesis, we contribute to the state of the art of real-time control systems towards the adoption of embedded GPUs by providing tools to facilitate the resource provisioning analysis and the integration in the model-based design development cycle. First, we present a methodology and an automated tool to extract the properties of GPU memory allocators. This tool allows the computation of the real amount of memory used by GPU applications, facilitating a correct resource provisioning analysis. Then, we present a library which allows the characterization of the use of dynamic memory in GPU applications. We use this library to characterize GPU benchmarks and we identify memory allocation patterns that could be modified to improve performance and memory consumption when targeting embedded GPUs. Based on these results, we present a tool to optimize the use of dynamic memory in legacy GPU applications executed on embedded platforms. This tool allows us to minimize the memory consumption and memory management overhead of GPU applications without rewriting them. Afterwards, we analyze the timing of control algorithms executed in embedded GPUs and we identify techniques to achieve an acceptable real-time behavior. Finally, we evaluate model-based design tools in terms of integration with GPU hardware and GPU code generation, and we propose improvements for the model-based generated GPU code. Then, we present a source-to-source transformation tool to automatically apply the proposed improvements. La industria de los sistemas de control en tiempo real avanza hacia la consolidación de múltiples sistemas informáticos en menos y más potentes sistemas, con el objetivo de reducir el tamaño, el peso y el consumo. La creciente demanda de un mayor rendimiento en otros dominios críticos, como la conducción autónoma, ha llevado a la industria a incluir recientemente GPU embebidas para la implementación de funcionalidades avanzadas. La arquitectura altamente paralela de las GPU también podría aprovecharse en la industria de los sistemas de control para desarrollar sistemas de control más avanzados, eficientes energéticamente y escalables. Sin embargo, la naturaleza privativa y no determinista de las GPUs complica el análisis de aprovisionamiento de recursos requerido para la implementación de sistemas críticos en tiempo real. Por otro lado, no hay indicios de la integración de las GPU en el ciclo de desarrollo tradicional de los sistemas de control, que está orientado al uso de un enfoque de diseño basado en modelos. Recientemente, algunos proveedores de herramientas de diseño basado en modelos han ampliado sus entornos de desarrollo con capacidades de generación de código de GPU dirigidas a plataformas informáticas híbridas, de modo que el entorno de diseño basado en modelos ahora permite el análisis simultáneo de funciones más complejas y diversas mediante la simulación y la automatización de la implementación para el objetivo final. Sin embargo, no hay indicación de si estas herramientas son adecuadas para el diseño y desarrollo de sistemas sensibles al tiempo. Motivados por estos desafíos, en esta tesis contribuimos al estado del arte de los sistemas de control en tiempo real hacia la adopción de GPUs integradas al proporcionar herramientas para facilitar el análisis de aprovisionamiento de recursos y la integración en el ciclo de desarrollo de diseño basado en modelos. Primero, presentamos una metodología y una herramienta automatizada para extraer las propiedades de los asignadores de memoria en GPUs. Esta herramienta permite el cómputo de la cantidad real de memoria utilizada por las aplicaciones GPU, facilitando un correcto análisis del aprovisionamiento de recursos. Luego, presentamos una librería que permite la caracterización del uso de memoria dinámica en aplicaciones de GPU. Usamos esta librería para caracterizar una serie de benchmarks GPU e identificamos patrones de asignación de memoria que podrían modificarse para mejorar el rendimiento y el consumo de memoria al utilizar GPUs embebidas. Con base en estos resultados, presentamos también una herramienta para optimizar el uso de la memoria dinámica en aplicaciones de GPU heredadas al ser ejecutadas en plataformas embebidas. Esta herramienta nos permite minimizar el consumo de memoria y la sobrecarga de administración de memoria de las aplicaciones GPU sin necesidad de reescribirlas. Posteriormente, analizamos el tiempo de los algoritmos de control ejecutados en GPUs embebidas e identificamos técnicas para lograr un comportamiento de tiempo real aceptable. Finalmente, evaluamos las herramientas de diseño basadas en modelos en términos de integración con hardware GPU y generación de código GPU, y proponemos mejoras para el código GPU generado por las herramientas basadas en modelos. Luego, presentamos una herramienta de transformación de código fuente para aplicar automáticamente al código generado las mejoras propuestas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.