Lead iodide (PbI 2) is a semiconductor with extensive use as an active layer for X-ray detectors and as a precursor for perovskite solar cells. Here we present a low vacuum method to obtain very uniform PbI 2 films with full substrate coverage. This method consists in the sublimation of PbI 2 inside a hot zone and its transport by an Ar flow to a substrate held at a controlled temperature. Using scanning electron microscopy combined with focused ion beam and X-ray diffraction we studied the morphology and crystallographic structure of the PbI 2 films with different deposition parameters: substrate and source evaporation temperature, deposition time and substrate material. At high substrate temperature (80ºC) and low evaporation temperature (310ºC) onto a glass sample, we obtained dense and smooth PbI 2 films showing hexagonal crystals, or platelets, stacked parallel to the substrate. The choice of the substrate material has a significant impact on the film morphology yielding porous-like structures with voids within the films for some substrates. A bandgap E g = 2.42 eV and Urbach energy
A definitive breakthrough of perovskite solar cells towards large scale industrialization is believed to be the demonstration of higher efficiencies than conventional silicon technology, suggesting the exploration of perovskite tandem cell configurations. Since high efficiency tandem solar cells require careful optimization of photoactive as well as contact and additional functional layers, we propose an optical-electrical model to obtain the optimum layer thicknesses and the attainable electrical output parameters of two-terminal perovskite-perovskite tandem solar cells. The optical model takes into account the coherent propagation of light through the layer stack comprising two perovskite semiconductors and the corresponding contact layers, while the electrical model assumes two series-connected analytical current/voltage equations for pin solar cells. This model allows to assess the impact of the main physical parameters on each perovskite layer without requiring the high specificity needed in more rigorous numerical simulations. Efficiencies above 34% are predicted considering available perovskites with non-optimum bandgap and contact materials already proven in efficient laboratory solar cells. The requisite to attain such efficiencies is that recombination at the interfaces between the perovskite and contact materials is kept low in both bottom and top cells. Furthermore, within the assumption of non-optimum bandgaps of currently available perovskites, the simulation results suggest that efficiencies around 37% are possible when adopting contact materials with smaller absorption, more adequate refraction indices, and lower resistivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.