Neuroprotective M2‐skewed microglia appear as promising to alter the course of neurodegenerative diseases and G protein‐coupled receptors (GPCRs) are potential targets to achieve such microglial polarization. A common feature of adenosine A2A (A2AR) and cannabinoid CB2 (CB2R) GPCRs in microglia is that their expression is upregulated in Alzheimer's disease (AD). On the one hand, CB2R seems a target for neuroprotection, delaying neurodegenerative processes like those associated to AD or Parkinson's diseases. A2AR antagonists reduce amyloid burden and improve cognitive performance and memory in AD animal models. We here show a close interrelationship between these two receptors in microglia; they are able to physically interact and affect the signaling of each other, likely due to conformational changes within the A2A‐CB2 receptor heteromer (A2A‐CB2Het). Particularly relevant is the upregulation of A2A‐CB2Het expression in samples from the APPSw,Ind AD transgenic mice model. The most relevant finding, confirmed in both heterologous cells and in primary cultures of microglia, was that blockade of A2A receptors results in increased CB2R‐mediated signaling. This heteromer‐specific feature suggests that A2AR antagonists would potentiate, via microglia, the neuroprotective action of endocannabinoids with implications for AD therapy.
(1) Background. N-methyl d-aspartate (NMDA) ionotropic glutamate receptor (NMDAR), which is one of the main targets to combat Alzheimer’s disease (AD), is expressed in both neurons and glial cells. The aim of this paper was to assess whether the adenosine A2A receptor (A2AR), which is a target in neurodegeneration, may affect NMDAR functionality. (2) Methods. Immuno-histo/cytochemical, biophysical, biochemical and signaling assays were performed in a heterologous cell expression system and in primary cultures of neurons and microglia (resting and activated) from control and the APPSw,Ind transgenic mice. (3) Results. On the one hand, NMDA and A2A receptors were able to physically interact forming complexes, mainly in microglia. Furthermore, the amount of complexes was markedly enhanced in activated microglia. On the other hand, the interaction resulted in a novel functional entity that displayed a cross-antagonism, that could be useful to prevent the exacerbation of NMDAR function by using A2AR antagonists. Interestingly, the amount of complexes was markedly higher in the hippocampal cells from the APPSw,Ind than from the control mice. In neurons, the number of complexes was lesser, probably due to NMDAR not interacting with the A2AR. However, the activation of the A2AR receptors resulted in higher NMDAR functionality in neurons, probably by indirect mechanisms. (4) Conclusions. A2AR antagonists such as istradefylline, which is already approved for Parkinson’s disease (Nouriast® in Japan and Nourianz® in the US), have potential to afford neuroprotection in AD in a synergistic-like fashion. i.e., via both neurons and microglia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.