Anthropogenic disturbances such as fragmentation are rapidly altering biodiversity, yet a lack of attention to species traits and abundance patterns has made the results of most studies difficult to generalize. We determined traits of extinction-prone species and present a novel strategy for classifying species according to their population-level response to a gradient of disturbance intensity. We examined the effects of forest fragmentation on dung beetle communities in an archipelago of 33 islands recently created by flooding in Venezuela. Species richness, density, and biomass all declined sharply with decreasing island area and increasing island isolation. Species richness was highly nested, indicating that local extinctions occurred nonrandomly. The most sensitive dung beetle species appeared to require at least 85 ha of forest, more than many large vertebrates. Extinction-prone species were either large-bodied, forest specialists, or uncommon. These explanatory variables were unrelated, suggesting at least 3 underlying causes of extirpation. Large species showed high wing loading (body mass/wing area) and a distinct flight strategy that may increase their area requirements. Although forest specificity made most species sensitive to fragmentation, a few persistent habitat generalists dispersed across the matrix. Density functions classified species into 4 response groups on the basis of their change in density with decreasing species richness. Sensitive and persistent species both declined with increasing fragmentation intensity, but persistent species occurred on more islands, which may be due to their higher baseline densities. Compensatory species increased in abundance following the initial loss of sensitive species, but rapidly declined with increasing fragmentation. Supertramp species (widespread habitat generalists) may be poor competitors but strong dispersers; their abundance peaked following the decline of the other 3 groups. Nevertheless, even the least sensitive species were extirpated or rare on the smallest and most isolated islands.
The dung beetle subfamily Scarabaeinae is a cosmopolitan group of insects that feed primarily on dung. We describe the first case of an obligate predatory dung beetle and contrast its behaviour and morphology with those of its coprophagous sympatric congeners. Deltochilum valgum Burmeister killed and consumed millipedes in lowland rainforest in Peru. Ancestral ball-rolling behaviour shared by other canthonine species is abandoned, and the head, hind tibiae and pygidium of D. valgum are modified for novel functions during millipede predation. Millipedes were killed by disarticulation, often through decapitation, using the clypeus as a lever. Beetles killed millipedes much larger than themselves. In pitfall traps, D. valgum was attracted exclusively to millipedes, and preferred injured over uninjured millipedes. Morphological similarities placing D. valgum in the same subgenus with nonpredatory dung-feeding species suggest a major and potentially rapid behavioural shift from coprophagy to predation. Ecological transitions enabling the exploitation of dramatically atypical niches, which may be more likely to occur when competition is intense, may help explain the evolution of novel ecological guilds and the diversification of exceptionally species-rich groups such as insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.