The efficient computation of viewpoints while considering various system and process constraints is a common challenge that any robot vision system is confronted with when trying to execute a vision task. Although fundamental research has provided solid and sound solutions for tackling this problem, a holistic framework that poses its formal description, considers the heterogeneity of robot vision systems, and offers an integrated solution remains unaddressed. Hence, this publication outlines the generation of viewpoints as a geometrical problem and introduces a generalized theoretical framework based on Feature-Based Constrained Spaces (C-spaces) as the backbone for solving it. A C-space can be understood as the topological space that a viewpoint constraint spans, where the sensor can be positioned for acquiring a feature while fulfilling the constraint. The present study demonstrates that many viewpoint constraints can be efficiently formulated as C-spaces, providing geometric, deterministic, and closed solutions. The introduced C-spaces are characterized based on generic domain and viewpoint constraints models to ease the transferability of the present framework to different applications and robot vision systems. The effectiveness and efficiency of the concepts introduced are verified on a simulation-based scenario and validated on a real robot vision system comprising two different sensors.
BackgroundThe purpose of this study was to perform a derotational osteotomy at the distal femur, as is done in cases of patellofemoral instability, and demonstrate the predictability of three-dimensional (3D) changes on axes in a cadaveric model by the use of a new mathematical approach.MethodsTen human cadaveric femurs, with increased antetorsion, underwent a visually observed derotational osteotomy at the distal femur by 20°, as is commonly done in clinics. For surgery, a single cut osteotomy with a defined cutting angle was calculated and given using a simple 3D-printed cutting guide per specimen, based on a newly-created trigonometrical model. To simulate post-operative straight frontal alignment in a normal range, a goal for the mechanical lateral distal femur angle (mLDFA) was set to 87.0° for five specimens (87-goal group) and 90.0° for five specimens (90-goal group). Specimens underwent pre- and post-operative radiographic analysis with CT scan for torsion and frontal plane x-ray for alignment measurements of mLDFA and anatomical mechanical angle (AMA).ResultsPerformed derotation showed a mean of 19.69° ±1.08°SD (95% CI: 18.91° to 20.47°). Regarding frontal alignment, a mean mLDFA of 86.9° ±0.66°SD (87-goal-group) and 90.42° ±0.25° SD (90-goal group), was observed (p = 0.008). Overall, the mean difference between intended mLDFA-goal and post-operatively achieved mLDFA was 0.14° ±0.56° SD (95% CI: -0.26° to 0.54°).ConclusionA preoperative calculated angle for single cut derotational osteotomy at the distal femur leads to a clinically precise post-operative result on torsion and frontal alignment when using this approach.
One of the major drawbacks associated with autologous fat grafting is unpredictable graft retention. Various efforts to improve the survivability of these cells have been explored, but these methods are time-consuming, complex, and demand significant technical skill.In our study, we examine the use of cryopreserved amniotic membrane as a source of exogenous growth factors to improve adipocyte survivability under normal and hypoxic conditions. Human primary preadipocytes were cultured in a gelatin-ferulic acid (Gtn-FA) hydrogel with variable oxygen concentration and treated with amniotic membranederived condition medium (CM) for 7 days. This hydrogel provides a hypoxic environment and also creates a 3D cell culture to better mimic recipient site conditions. The O 2 concentration in the hydrogel was measured by electron paramagnetic resonance oxygen imaging (EPROI). The conjugation of FA was confirmed by FTIR and NMR spectroscopy.The cell viability and adipocyte differentiation were analyzed by alamarBlue™ assay, Oil Red O staining, and RT-qPCR. The expression of genes: Pref-1, C/EBP β, C/EBP α, PPAR-ƴ, SLC2A4, and VEGF-A were quantified. The cell viability results show that the 50% CM showed significantly higher cell pre-adipocyte cell viability. In addition, compared to normal conditions, hypoxia/CM provided higher PPAR-ƴ (p < .05), SLC2A4, and VEGF-A (p < .05) (early and terminal differentiating markers) mRNA expression. This finding demonstrates the efficacy of amniotic CM supplementation as a novel way to promote adipocyte survival and retention via the expression of key gene markers for differentiation and angiogenesis.
Due to major technological improvements over the last decades and a significant decrease in costs, electronic projection systems show great potential for providing innovative applications across industries. In most cases, projectors are used to display entire images onto contiguous plane surfaces, but with no active consideration of their three-dimensional environment. Since spatial interactive projections promise new possibilities to display information in the manufacturing industry, we developed a practical approach to how common projection systems can be integrated into a working space and interact with their environment. In order to display information in a spatially dependent manner, a projection model was introduced along with a calibration method for mapping. Subsequently, the approach was validated in the context of robot-based optical inspection systems where texture projections are applied onto sheet metal parts as references features, exclusively to designated regions. The results show that accurate region-specific projections were possible within the calibrated projection volume. In addition, the accuracy and computing speed were investigated to identify limitations. Our approach for interactive projections supports the transfer to other application areas, enables us to rethink current manual and automated procedures and processes in which visualized information benefits the task of interest, and provides new functionalities for manufacturing industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.