The Yungas, a subtropical mountain rainforest of South America, has been little studied in relation to the evolutionary history of the large‐bodied species of the genus Calomys. Particularly, two species have been synonymized: C. boliviae and C. fecundus; the first is only known from its type locality in the northern Bolivian Yungas, whereas the second is known along the Tucumane–Bolivian Yungas shared by Bolivia and Argentina. In this study, we combined a phylogeographic approach with ecological niche modeling, with samples covering most of the geographic range of C. fecundus. One mitochondrial and two nuclear genes were used for population genetic analyses. Current and paleoclimatic models were obtained. Nuclear genes resulted uninformative by retention of ancestral polymorphism with other species of Calomys. The mitochondrial marker revealed a complex network showing signals of several population expansions. Three genetic clusters in a latitudinal sense were detected, which are coincident with the three stable climatic zones estimated by current and paleoclimatic models. We determined a pattern of expansion during glacial cycles and ancestral refugia during interglacial cycles. None of the potential distribution models predicted the presence of C. fecundus in the type locality of C. boliviae. Therefore, we recommend making integrative taxonomic studies in the Bolivian Yungas, to determine whether or not C. fecundus and C. boliviae correspond to the same species.
Little is known about phylogeography of armadillo species native to southern South America. In this study we describe the phylogeography of the screaming hairy armadillo Chaetophractus vellerosus, discuss previous hypothesis about the origin of its disjunct distribution and propose an alternative one, based on novel information on genetic variability. Variation of partial sequences of mitochondrial DNA Control Region (CR) from 73 individuals from 23 localities were analyzed to carry out a phylogeographic analysis using neutrality tests, mismatch distribution, median-joining (MJ) network and paleontological records. We found 17 polymorphic sites resulting in 15 haplotypes. Two new geographic records that expand known distribution of the species are presented; one of them links the distributions of recently synonimized species C. nationi and C. vellerosus. Screaming hairy armadillo phylogeographic pattern can be addressed as category V of Avise: common widespread linages plus closely related lineages confined to one or a few nearby locales each. The older linages are distributed in the north-central area of the species distribution range in Argentina (i.e. ancestral area of distribution). C. vellerosus seems to be a low vagility species that expanded, and probably is expanding, its distribution range while presents signs of genetic structuring in central areas. To explain the disjunct distribution, a hypothesis of extinction of the species in intermediate areas due to quaternary climatic shift to more humid conditions was proposed. We offer an alternative explanation: long distance colonization, based on null genetic variability, paleontological record and evidence of alternance of cold/arid and temperate/humid climatic periods during the last million years in southern South America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.