We demonstrate few-charge occupation of electron and hole quantum dots in silicon via charge sensing. We have fabricated quantum dot (QD) devices in a silicon metal-oxide-semiconductor heterostructure comprising a single-electron transistor next to a single-hole transistor. Both QDs can be tuned to simultaneously sense charge transitions of the other one. We further detect the few-electron and few-hole regimes in the QDs of our device by active charge sensing.
We study the velocity autocorrelations in an experimental configuration of confined two-dimensional active rotors (disks). We report persistent small scale oscillations in both rotational and translational velocity autocorrelations, with their characteristic frequency increasing as rotational activity increases. While these small oscillations are qualitatively similar in all experiments, we found that, at strong particle rotational activity, the large scale particle spin fluctuations tend to vanish, with the small oscillations around zero persisting in this case, and spins remain predominantly and strongly anti-correlated at longer times. For weaker rotational activity, however, spin fluctuations become increasingly larger and angular velocities remain de-correlated at longer times. We discuss in detail how the autocorrelation oscillations are related to the rotational activity and why this feature is arguably should generically signal the emergence of chirality in the dynamics of a particulate system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.