Joint stiffness estimation under dynamic conditions still remains a challenge. Current stiffness estimation methods often rely on the external perturbation of the joint. In this study, a novel 'perturbation-free' stiffness estimation method via electromyography (EMG)-driven musculoskeletal modeling was validated for the first time against system identification techniques. EMG signals, motion capture, and dynamic data of the ankle joint were collected in an experimental setup to study the ankle joint stiffness in a controlled way, i.e. at a movement frequency of 0.6 Hz as well as in the presence and absence of external perturbations. The model-based joint stiffness estimates were comparable to system identification techniques. The ability to estimate joint stiffness at any instant of time, with no need to apply joint perturbations, might help to fill the gap of knowledge between the neural and the muscular systems and enable the subsequent development of tailored neurorehabilitation therapies and biomimetic prostheses and orthoses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.