Highlights Data-informed methodology calculates the level of traffic stress of cyclists. Method scales to massive data sets by coupling a classifier with a predictive model. Methodology tested on the road network of Bogotá (Colombia) Web-enabled dashboard supports policy making and interventions to reduce stress. Number of bicyclists’ collisions per kilometer correlates with higher stress.
En el presente trabajo, se utilizó un dispositivo BCI comercial, el Emotiv EPOC, el cual es un neuroheadset inalámbrico de alta resolución para la adquisición de señales EEG, para desarrollar una herramienta con detección inteligente de patrones neuronales paralela a la del desarrollador para la implementación de una aplicación que combina la Realidad Aumentada (AR). La aplicación pensada como posible tratamiento del Dolor del Miembro Fantasma (PLP) en pacientes amputados. El desarrollo del motor de clasificación permitió tener un mayor control sobre los parámetros del procesamiento y detección de patrones en las señales, donde se obtuvo hasta un 82.1% de clasificación. Estas señales neuronales detectadas de un sujeto, se utilizan para descifrar su intención de cerrar o abrir un modelo virtual de una mano o de una prótesis adherida al muñón real a través del entorno AR, brindando retroalimentación visual al paciente. Lo que contribuiría a reducir neurológicamente el PLP
The material cutting process consists of two NP-hard problems: first, it is necessary to find the optimal cutting pattern to minimize the waste area. Second, it is necessary to find the cutting sequence over the plate to extract the pieces in the shortest possible time. The structure of the cutting path problem can vary according to the technology used in the process. In industries where material can be considered a commodity, the cutting path is decisive due to the need to operate economically and efficiently. These types of minimization demand exact models that use nonconventional formulation techniques in search of computational efficiency and for heuristic processes to be specialized so that a good solution is guaranteed. In this paper, three different approaches were proposed. First, a novel and accurate formulation was presented based on a network flow structure. Second, a reactive GRASP algorithm with solution filtering was designed, using seven operators executed under two randomly selected local search philosophies. Finally, four warm-start variants were designed hybridizing the GRASP algorithm subprocedures with the exact model. The approaches are compared through benchmarking; for this, a set of instances composed of cutting patterns taken from the solution of classical instances of the two-dimensional cutting problem was created and made available. The obtained results show that all three approaches solve the problem successfully. Additionally, the computing time is analyzed, illustrating the pros and cons of each approach. Given the cutting path, including the quality of the pieces is left as a future work proposal.
Resumen-El control de procesos con dinámica estocástica o compleja es exitoso siempre y cuando se pueda estimar un modelo que se ajuste bien al comportamiento, sin embargo, esta suposición pierde validez en aplicaciones donde la información del sistema es reducida o incompleta, muy comunes en ambientes reales de la industria. La literatura presenta diferentes esquemas de control, siendo los modelos neuro-difusos los que reportan mejor desempeño. Estos modelos conjugan la capacidad de adaptación que tienen las redes neuronales con la robustez de los motores de inferencia que tiene la lógica difusa, para modelar el conocimiento de expertos mediante reglas de aprendizaje, identificar dinámicas complejas y aumentar la adaptabilidad del sistema a perturbaciones que en la práctica tienden a ser de naturaleza estocástica sumado, a veces, que la información del sistema sea restringida. Este artículo presenta una revisión sobre dificultades y soluciones derivadas del control de sistemas estocásticos o complejos con información incompleta. Se revisan las estructuras de control cuando la dinámica del sistema presenta vaguedad en los datos, la evolución hacia técnicas adaptativas, y el desempeño de las redes neuro-difusas ante procesos estocásticos o complejos con incertidumbre en los datos. De forma preliminar se establece que el control de este tipo de sistemas debe estar compuesto por modelos híbridos soportados en rutinas de optimización y análisis probabilístico que garanticen el tratamiento de las incertidumbres sin afectar el desempeño de las estructuras de control y la consistencia en la precisión.Palabras clave-Control adaptativo, sistemas estocás-ticos, redes neuronales, lógica difusa, modelos neurodifusos, información incompleta.Abstract-Control theory for processes with stochastic or complex dynamics has a successful performance as long as a model can be adjusted to the system behavior, although for real applications in the industry, where data can be reduced or incomplete, this statement may not be true. Different control schemes have been proposed and the literature reports promising results with neural fuzzy models. These models combine the adaptability of neural networks with the robust inference of fuzzy logic, in order to model expert knowledge by learning rules, identify complex dynamics and enhance the control adaptability when stochastic disturbances are present, which sometimes cause incomplete system data. This paper presents a review on the difficulties and solutions related to the control of stochastic or complex systems with incomplete data. This study, initially, discusses the control structures when the system data present notable uncertainty levels. Next, different adaptive control schemes are presented, and finally, nonlinear and stochastic control approaches based on neural fuzzy systems are reviewed. Thereby, in a preliminary way, this review establishes that a system under the conditions mentioned above should be controlled by hybrid models supported on probabilistic routines and optimizatio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.