The Canary Archipelago has long been a sensitive location to record climate changes of the past. Interbedded with its basalt lavas are marine deposits from the principal Pleistocene interglacials, as well as aeolian sands with intercalated palaeosols. The palaeosols contain African dust and innumerable relict egg pods of a temperate-region locust (cf. Dociostaurus maroccanus Thunberg 1815). New ecological and stratigraphical information reveals the geological history of locust plagues (or infestations) and their palaeoclimatic significance. Here, we show that the first arrival of the plagues to the Canary Islands from Africa took place near the end of the Pliocene, ca. 3 Ma, and reappeared with immense strength during the middle Late Pleistocene preceding MIS (marine isotope stage) 11 (ca. 420 ka), MIS 5.5 (ca. 125 ka) and probably during other warm interglacials of the late Middle Pleistocene and the Late Pleistocene. During the Early Holocene, locust plagues may have coincided with a brief cool period in the current interglacial. Climatically, locust plagues on the Canaries are a link in the chain of full-glacial arid-cold climate (calcareous dunes), early interglacial arid-sub-humid climate (African dust inputs and locust plagues), peak interglacial warm-humid climate (marine deposits with Senegalese fauna), transitional arid-temperate climate (pedogenic calcretes), and again full-glacial arid-cold climate (calcareous dunes) oscillations. During the principal interglacials of the Pleistocene, the Canary Islands recorded the migrations of warm Senegalese marine faunas to the north, crossing latitudes in the Euro-African Atlantic. However, this northward marine faunal migration was preceded in the terrestrial realm by interglacial infestations of locusts.
This article shows a climate change mitigation strategy by means of membranes replacement and determination methodology of carbon footprint in reverse osmosis (RO) desalination plants, valid for all the islands, and even isolated territories in the continent. This study takes the case of study of Canary Islands, where there are more than 320 desalination plants with different sizes, private, and public. The objective is to propose a new method which integrates this analysis with the replacement of membranes, from 0% to 20% per year in sea water reverse osmosis desalination plants, to reduce the carbon footprint and ecological footprint. If it is considered a replacement of 20% of the elements per year, the carbon footprint could be reduced to between 5% and 6% and even more if it is introduced low energy consumption membranes instead of high rejection elements. The factor mix in Canary Islands, according to the technological structure of the generation park that uses oil products, is around 0.678 kgCO2/kWh, much higher than in the Spanish mainland where it is 0.263 kgCO2/kWh. Therefore, it is estimated in Canary Islands 5,326,963 t CO2/year can be emitted, which represents 2.4 tCO2/person/year, 12 times more the admissible admissions per inhabitant in the Canary Islands, only considering the seawater desalination sector. This document shows the different results of the analysis of energy efficiency and the environmental footprints. This study may serve as a tool for the decision-making processes related to how to improve energy efficiency in desalination plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.