En este artículo se presenta un análisis de vibraciones en motores de inducción por medio de Modelos Ocultos de Markov (Hidden Markov Model - HMM) aplicado a características obtenidas de la Descomposición de Modo Empírico (Empirical Mode Decomposition - EMD) y transformada de Hilbert-Huang de señales de vibración obtenidas en las coordenadas x y y, con el fin de detectar fallas de funcionamiento en rodamientos y barras. Además se presenta un análisis comparativo de la capacidad de las señales de vibración en dirección x y en dirección y, para aportar información en la detección de fallas. Así, un HMM ergódico inicializado y entrenado por medio del algoritmo de máxima esperanza, con convergencia en 10e-7 y un máximo de iteraciones de 100, se aplicó sobre el espacio de características y su desempeño fue determinado mediante validación cruzada 80-20 con 30 fold, obteniendo un alto desempeño para la detección de fallas en términos de exactitud.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.