Unbleached (UN), oxygen-delignified and fully-bleached (FB) birch fibers with a residual lignin content of ca. 3, 2 and\1 %, respectively, were used to produce nanofibrillated cellulose (NFC) and nanopaper by using an overpressure device. The tensile index, elongation and elastic modulus of nanopaper were compared and the effect of residual cellwall components accessed. Under similar manufacturing conditions, UN NFC produced nanopaper with a density of 0.99 g/cm3, higher than that from FB NFC (0.7 g/cm3). This translated in much lower air permeability in the case of UN nanopaper (1 and 11 mL/min for UN and FB samples, respectively). Fundamentally, these observations are ascribed to the finer fibrils produced during microfluidization of UN fibers compared to those from lower yield counterparts(AFMroughness of 8 and 17 nm and surface areas of 124 and 98 m2/g for NFC from UN and FBfibers, respectively).As a result, values of stress at break and energy absorption of nanopaper from high yield fibers are distinctively higher than those from fully bleached NFC. Interactions of water with the surface and bulk materialwere affected by the chemical composition and structure of the nanofibrils. While UN nanopaper presented higher water contact angles their sorption capacity (and rate of water absorption) was much higher than thosemeasured for nanopaper from FB NFC. These and other observations provided in this contribution are proposed to be related to the mechanoradical scavenging capacity of lignin in high shear microfluidization and the presence of residual heteropolysaccharidesPostprint (published version
Technical lignins are structurally heterogeneous and polydisperse. This work describes the use of a simple and green method for lignin fractionation, using different proportions of acetone (40 and 60%) in water. Lignins from three different sources (wheat straw organosolv lignin, wheat straw soda lignin and softwood kraft lignin) were used in this fractionation protocol. The obtained fractions showed different molar mass and functional groups. The lower molar mass fractions showed more phenolic hydroxyl groups and carboxylic acid moieties than higher molar mass fractions, which also possessed much higher amounts of carbohydrates. The chemical characterization of these fractionated lignins showed that the PREC fraction was exceptionally pure and homogeneous lignin. Its total lignin content was >96% for all three lignins and it was practically free from carbohydrates and inorganics (ash). Furthermore, PREC fraction possessed the highest carbon content for the three lignin samples (63.05-69.26%). These results illustrate that the proposed aqueous acetone fractionation protocol could indeed produce pure and uniform lignin fraction and it was applicable for lignins from different sources.
Lignin is the second most abundant biopolymer on the planet. It is a biocompatible, cheap, environmentally friendly and readily accessible material. It has been reported that these biomacromolecules have antimicrobial activities. Consequently, lignin (LIG) has the potential to be used for biomedical applications. In the present work, a simple method to prepare lignin-based hydrogels is described. The hydrogels were prepared by combining LIG with poly(ethylene glycol) and poly(methyl vinyl ether-co-maleic acid) through an esterification reaction. The synthesis took place in the solid state and can be accelerated significantly (24 vs 1 h) by the use of microwave (MW) radiation. The prepared hydrogels were characterized by evaluation of their swelling capacities and with the use of infrared spectroscopy/solid-state nuclear magnetic resonance. The prepared hydrogels showed LIG contents ranging between 40% and 24% and water uptake capabilities up to 500%. Furthermore, the hydrophobic nature of LIG facilitated loading of a model hydrophobic drug (curcumin). The hydrogels were capable of sustaining the delivery of this compound for up to 4 days. Finally, the materials demonstrated logarithmic reductions in adherence of Staphylococcus aureus and Proteus mirabilis of up to 5.0 relative to the commonly employed medical material poly(vinyl chloride) (PVC).
Biopolymers from forestry biomass are promising for the sustainable development of new biobased materials. As such, lignin and fiber-based biocomposites are plausible renewable alternatives to petrochemical-based products. In this study, we have obtained lignin from Spruce biomass through a soda pulping process. The lignin was used for manufacturing biocomposite filaments containing 20% and 40% lignin and using polylactic acid (PLA) as matrix material. Dogbones for mechanical testing were 3D printed by fused deposition modelling. The lignin and the corresponding biocomposites were characterized in detail, including thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis (XRD), antioxidant capacity, mechanical properties, and scanning electron microscopy (SEM). Although lignin led to a reduction of the tensile strength and modulus, the reduction could be counteracted to some extent by adjusting the 3D printing temperature. The results showed that lignin acted as a nucleating agent and thus led to further crystallization of PLA. The radical scavenging activity of the biocomposites increased to roughly 50% antioxidant potential/cm2, for the biocomposite containing 40 wt % lignin. The results demonstrate the potential of lignin as a component in biocomposite materials, which we show are adequate for 3D printing operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.