The purpose of this investigation was to develop an exploratory two-step level A IVIVC for three telmisartan oral immediate release formulations, the reference product Micardis, and two generic formulations (X1 and X2). Correlation was validated with a third test formulation, Y1. Experimental solubility and permeability data were obtained to confirm that telmisartan is a class II compound under the Biopharmaceutic Classification System. Bioequivalence (BE) studies plasma profiles were combined using a previously published reference scaling procedure. X2 demonstrated in vivo BE, while X1 and Y1 failed to show BE due to the lower boundary of the 90% confidence interval for C being outside the acceptance limits. Average plasma profiles were deconvoluted by the Loo-Riegelman method to obtain the oral fractions absorbed ( f). Fractions dissolved ( f) were obtained in several conditions in USP II and USP IV apparatus, and later, the results were compared in order to find the most biopredictive model, calculating the f similarity factor. The apparatus and conditions showing the same rank order than in vivo data were selected for further refinement of conditions. A Levy plot was constructed to estimate the time scaling factor and to make both processes, dissolution and absorption, superimposable. The in vitro dissolution experiment that reflected more accurately the in vivo behavior of the different formulations of telmisartan employed the USP IV dissolution apparatus and a dissolution environment with a flow rate of 8 mL/min and a three-step pH change, from 1.2 to 4.5 and 6.8, with a 0.05% of Tween 80. Thus, these conditions gave rise to a biopredictive dissolution test. This new model is able to predict the formulation differences in dissolution that were previously observed in vivo, which could be used as a risk-analysis tool for formulation selection in future bioequivalence trials.
The purpose of this work is to explore the predictive ability of the biopharmaceutics classification system (BCS) biowaiver based on the dissolution methods for two pravastatin test products, where one of them showed bioequivalence (BE) while the other test failed (non-bioequivalence, or NBE), and to explore the reasons for the BE failure. Experimental solubility and permeability data confirmed that pravastatin is a BCS class III compound. The permeability experiments confirmed that the NBE formulation significantly increased pravastatin permeability, and could explain its higher absorption rate and higher Cmax. This finding highlights the relevance of requiring similar excipients for BCS class III drugs. The BCS-based biowaiver dissolution tests at pH 1.2, 4.5, and 6.8, with the paddle apparatus at 50 rpm in 900 mL media, were not able to detect differences in pravastatin products, although the NBE formulation exhibited a more rapid dissolution at earlier sampling times. Dissolution tests conducted in 500 mL did not achieve complete dissolution, and both formulations were dissimilar because the amount dissolved at 15 min was less than 85%. The difference was less than 10% at pH 1.2 and 4.5, while at pH 6.8 f2, results reflected the Cmax rank order.
The present work aimed to explain the differences in oral performance in fasted humans who were categorized into groups based on the three different drug product formulations of dexketoprofen trometamol (DKT) salt—Using a combination of in vitro techniques and pharmacokinetic analysis. The non-bioequivalence (non-BE) tablet group achieved higher plasma Cmax and area under the curve (AUC) than the reference and BE tablets groups, with only one difference in tablet composition, which was the presence of calcium monohydrogen phosphate, an alkalinizing excipient, in the tablet core of the non-BE formulation. Concentration profiles determined using a gastrointestinal simulator (GIS) apparatus designed with 0.01 N hydrochloric acid and 34 mM sodium chloride as the gastric medium and fasted state simulated intestinal fluids (FaSSIF-v1) as the intestinal medium showed a faster rate and a higher extent of dissolution of the non-BE product compared to the BE and reference products. These in vitro profiles mirrored the fraction doses absorbed in vivo obtained from deconvoluted plasma concentration–time profiles. However, when sodium chloride was not included in the gastric medium and phosphate buffer without bile salts and phospholipids were used as the intestinal medium, the three products exhibited nearly identical concentration profiles. Microscopic examination of DKT salt dissolution in the gastric medium containing sodium chloride identified that when calcium phosphate was present, the DKT dissolved without conversion to the less soluble free acid, which was consistent with the higher drug exposure of the non-BE formulation. In the absence of calcium phosphate, however, dexketoprofen trometamol salt dissolution began with a nano-phase formation that grew to a liquid–liquid phase separation (LLPS) and formed the less soluble free acid crystals. This phenomenon was dependent on the salt/excipient concentrations and the presence of free acid crystals in the salt phase. This work demonstrated the importance of excipients and purity of salt phase on the evolution and rate of salt disproportionation pathways. Moreover, the presented data clearly showed the usefulness of the GIS apparatus as a discriminating tool that could highlight the differences in formulation behavior when utilizing physiologically-relevant media and experimental conditions in combination with microscopy imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.