We report aR h-catalyzedh ydroaminomethylation reaction of terminal alkenes in glycerolt hat proceeds efficiently under mild conditions to produce the corresponding amines in relatively high selectivity towards linear amines, moderate to excellent yields by using al ow catalyst loading (1 mol %[ Rh],2mol %p hosphine) and relative low pressure (H 2 /CO, 1:1, total pressure 10 bar). This work sheds light on the importance of glycerol in enabling enamine reduction via hydrogen transfer.M oreover,e vidence for the crucial role of Rh as chemoselective catalyst in the condensation step has been obtained for the first time in the frame of the hydroaminomethylation reaction by precluding deleterious aldol condensation reactions. The hydroaminomethylation proceeds under am olecular regime;t he outcomeo f catalytically actives peciesi nto metal-based nanoparticles renderst he catalytic system inactive.
Thiolate-capped RhNPs in imidazolium-based ionic liquids were synthesized from [Rh(μ-SR)(COD)]2 dimmers under H2 pressure without external addition of ligand stabilizers, preserving thiolate integrity on the nanoparticle surface. This nanoparticulated systems showed a remarkable selectivity that led to their application in the one pot reductive N-alkylation to produce amines.
In the quest to develop nanometrically defined catalytic systems for applications in the catalytic valorization of agri-food wastes, small Ni-based nanoparticles supported on inorganic solid supports have been prepared by decomposition of organometallic precursors in refluxing ethanol under H2 atmosphere, in the presence of supports exhibiting insulating or semi-conductor properties, such as MgAl2O4 and TiO2, respectively. The efficiency of the as-prepared Ni-based nanocomposites has been evaluated towards the hydrogenation of unsaturated fatty acids under solvent-free conditions, with high selectivity regarding the hydrogenation of C=C bonds. The influence of the support on the catalytic performance of the prepared Ni-based nanocomposites is particularly highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.