Ligand binding to cell surface receptors initiates a cascade of signaling events regulated by dynamic phosphorylation events on a multitude of pathway proteins. Quantitative features, including intensity, timing, and duration of phosphorylation of particular residues, may play a role in determining cellular response, but experimental data required for analysis of these features have not previously been available. To understand the dynamic operation of signaling cascades, we have developed a method enabling the simultaneous quantification of tyrosine phosphorylation of specific residues on dozens of key proteins in a time-resolved manner, downstream of epidermal growth factor receptor (EGFR) activation. Tryptic peptides from four different EGFR stimulation time points were labeled with four isoforms of the iTRAQ reagent to enable downstream quantification. After mixing of the labeled samples, tyrosine-phosphorylated peptides were immunoprecipitated with an anti-phosphotyrosine antibody and further enriched by IMAC before LC/MS/MS analysis. Database searching and manual confirmation of peptide phosphorylation site assignments led to the identification of 78 tyrosine phosphorylation sites on 58 proteins from a single analysis. Replicate analyses of a separate biological sample provided both validation of this first data set and identification of 26 additional tyrosine phosphorylation sites and 18 additional proteins. iTRAQ fragment ion ratios provided time course phosphorylation profiles for each site. The data set of quantitative temporal phosphorylation profiles was further characterized by self-organizing maps, which resulted in identification of several cohorts of tyrosine residues exhibiting self-similar temporal phosphorylation profiles, operationally defining dynamic modules in the EGFR signaling network consistent with particular cellular processes. The presence of novel proteins and associated tyrosine phosphorylation sites within these modules indicates additional components of this network and potentially localizes the topological action of these proteins. Additional analysis and modeling of the data generated in this study are likely to yield more sophisticated models of receptor tyrosine kinaseinitiated signal transduction, trafficking, and regulation.
Although recent developments in MS have enabled the identification and quantification of hundreds of phosphorylation sites from a given biological sample, phosphoproteome analysis by MS has been plagued by inconsistent reproducibility arising from automated selection of precursor ions for fragmentation, identification, and quantification. To address this challenge, we have developed a new MS-based strategy, based on multiple reaction monitoring of stable isotope-labeled peptides, that enables highly reproducible quantification of hundreds of nodes (phosphorylation sites) within a signaling network and across multiple conditions simultaneously. We have applied this strategy to quantify temporal phosphorylation profiles of 222 tyrosine phosphorylated peptides across seven time points following EGF treatment, including 31 tyrosine phosphorylation sites not previously known to be regulated by EGF stimulation. With this approach, 88% of the signaling nodes were reproducibly quantified in four analyses, as compared with only 34% by typical information-dependent analysis. As a result of the improved reproducibility, full temporal phosphorylation profiles were generated for an additional 104 signaling nodes with the multiple reaction monitoring strategy, an 88% increase in our coverage of the signaling network. This method is broadly applicable to multiple signaling networks and to a variety of samples, including quantitative analysis of signaling networks in clinical samples. Using this approach, it should now be possible to routinely monitor the phosphorylation status of hundreds of nodes across multiple biological conditions. epidermal growth factor receptor ͉ mass spectrometry ͉ signal transduction ͉ tyrosine phosphorylation L igand binding to cell surface receptors activates multiple protein tyrosine phosphorylation-mediated signaling cascades that regulate many cell biological processes, including proliferation, differentiation, migration, and cell death (1-3). To mechanistically define the relationship between signaling networks and downstream biological responses, it is necessary to quantify the dynamics of protein phosphorylation sites across multiple cell states and to correlate this information to quantitative phenotypic measurements. Until recently, antibody-based assays (e.g., FACS, Western blots, tissue microarrays) have been favored for most signaling network studies. These assays provide excellent quantitative information on the phosphorylation status of selected nodes within the network, but require a priori knowledge of the proteins and phosphorylation sites to be studied and are limited by the need to have high-quality, non-cross-reactive antibodies recognizing specific sites within the network. By comparison, analysis of protein phosphorylation by MS provides the capability of identifying novel phosphorylation sites on novel proteins within the network, requires minimal a priori knowledge, and is therefore compatible with both well and poorly characterized signaling networks. Recent developments in M...
Although human epidermal growth factor receptor 2 (HER2) overexpression is implicated in tumor progression for a variety of cancer types, how it dysregulates signaling networks governing cell behavioral functions is poorly understood. To address this problem, we use quantitative mass spectrometry to analyze dynamic effects of HER2 overexpression on phosphotyrosine signaling in human mammary epithelial cells stimulated by epidermal growth factor (EGF) or heregulin (HRG). Data generated from this analysis reveal that EGF stimulation of HER2-overexpressing cells activates multiple signaling pathways to stimulate migration, whereas HRG stimulation of these cells results in amplification of a specific subset of the migration signaling network. Self-organizing map analysis of the phosphoproteomic data set permitted elucidation of network modules differentially regulated in HER2-overexpressing cells in comparison with parental cells for EGF and HRG treatment. Partial least-squares regression analysis of the same data set identified quantitative combinations of signals within the networks that strongly correlate with cell proliferation and migration measured under the same battery of conditions. Combining these modeling approaches enabled association of epidermal growth factor receptor family dimerization to activation of specific phosphorylation sites, which appear to most critically regulate proliferation and/or migration.
Multiple autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, Graves disease, and systemic lupus erythematosus, are associated with an allelic variant of protein tyrosine phosphatase nonreceptor 22 (PTPN22), which encodes the protein LYP. To model the human disease-linked variant LYP-R620W, we generated knockin mice expressing the analogous mutation, R619W, in the murine ortholog PEST domain phosphatase (PEP). In contrast with a previous report, we found that this variant exhibits normal protein stability, but significantly alters lymphocyte function. Aged knockin mice exhibited effector T cell expansion and transitional, germinal center, and age-related B cell expansion as well as the development of autoantibodies and systemic autoimmunity. Further, PEP-R619W affected B cell selection and B lineage-restricted variant expression and was sufficient to promote autoimmunity. Consistent with these features, PEP-R619W lymphocytes were hyperresponsive to antigen-receptor engagement with a distinct profile of tyrosine-phosphorylated substrates. Thus, PEP-R619W uniquely modulates T and B cell homeostasis, leading to a loss in tolerance and autoimmunity.
Summary Lysine methylation of histone proteins regulates chromatin dynamics and plays important roles in diverse physiological and pathological processes. However, beyond histone proteins, the proteome-wide extent of lysine methylation remains largely unknown. We have engineered the naturally occurring MBT domain repeats of L3MBTL1 to serve as a universal affinity reagent for detecting, enriching, and identifying proteins carrying a mono- or di-methylated lysine. The domain is broadly specific for methylated lysine (“pan-specific”) and can be applied to any biological system. We have used our approach to demonstrate that SIRT1 is a substrate of the methyltransferase G9a both in vitro and in cells, to perform proteome-wide detection and enrichment of novel methylated proteins, and to identify candidate in-cell substrates of G9a and the related methyltransferse GLP. Together, our results demonstrate a powerful new approach for global and quantitative analysis of methylated lysine, and they represent the first systems biology understanding of lysine methylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.