BackgroundTreatment with tyrosine kinase inhibitors (TKIs) for patients with chronic myeloid leukemia (CML) is effective but needs to continue for several years, possibly indefinitely. Although generally safe, TKI may have hitherto poorly recognized effects in the quality of life (QoL) of such patients.MethodsWe prospectively measured the symptom burden of patients with chronic phase CML enrolled on frontline TKI trials with dasatinib, nilotinib, or ponatinib. A total of 219 patients were enrolled and filled out the MD Anderson Symptom Inventory (MDASI)‐CML questionnaire before the start of therapy and during follow‐up at defined time points of 3, 6, 9, 12, 18, and 24 months.ResultsThe median age was 50 years. Longitudinal analysis showed relatively stable symptom severity scores over time. Fatigue was the most common symptom in all three cohorts, both prior to the start of therapy and during therapy, including after achievement of deep molecular remission. Work was the most affected component of daily living. Overall patients tolerated therapy well with improvement of their symptoms from baseline, with few dose reductions related to toxicity or symptomatology. Although 31% of the patients who completed MDASI‐CML achieved complete molecular remission by 24 months of treatment, nearly 90% experienced persistent mild symptoms.ConclusionSide effects related to TKIs may impact the quality of life in patients with CML‐CP. Further studies should investigate factors (comorbidities, concomitant medications, dose and schedule, etc) associated with these symptoms and interventions that may improve the patients’ QoL, including treatment discontinuation when safely feasible.
IMPORTANCE Physical frailty is a key risk factor associated with higher rates of major adverse events (MAEs) after surgery. Assessing physical frailty is often challenging among patients with chronic limb-threatening ischemia (CLTI) who are often unable to perform gait-based assessments because of the presence of plantar wounds. OBJECTIVE To test a frailty meter (FM) that does not rely on gait to determine the risk of occurrence of MAEs after revascularization for patients with CLTI. DESIGN, SETTING, AND PARTICIPANTS This cohort study included 184 consecutively recruited patients with CLTI at 2 tertiary care centers. After 32 individuals were excluded, 152 participants were included in the study. Data collection was conducted between May 2018 and June 2019. EXPOSURES Physical frailty measurement within 1 week before limb revascularization and incidence of MAEs for as long as 1 month after surgery. MAIN OUTCOMES AND MEASURES The FM works by quantifying weakness, slowness, rigidity, and exhaustion during a 20-second repetitive elbow flexion-extension exercise using a wrist-worn sensor. The FM generates a frailty index (FI) ranging from 0 to 1; higher values indicate progressively greater severity of physical frailty. RESULTS Of 152 eligible participants (mean [SD] age, 67.0 [11.8] years; 59 [38.8%] women), 119 (78.2%) were unable to perform the gait test, while all could perform the FM test. Overall, 53 (34.9%), 58 (38.1%), and 41 (27.0%) were classified as robust (FI <0.20), prefrail (FI Ն0.20 to <0.35), or frail (FI Ն0.35), respectively. Within 30 days after surgery, 24 (15.7%) developed MAEs, either major adverse cardiovascular events (MACE; 8 [5.2%]) or major adverse limb events (MALE; 16 [10.5%]). Baseline demographic characteristics were not significantly different between frailty groups. In contrast, the FI was approximately 30% higher in the group that developed MAEs (mean [SD] score, 0.36 [0.14]) than those who were MAE free (mean [SD] score, 0.26 [0.13]; P = .001), with observed MAE rates of 4 patients (7.5%), 7 patients (12.1%), and 13 patients (31.7%) in the robust, prefrail and frail groups, respectively (P = .004). The FI distinguished individuals who developed MACE and MALE from those who were MAE free (MACE: mean [SD] FI score, 0.38 [0.16]; P = .03; MALE: mean [SD] FI score, 0.35 [0.13]; P = .004) after adjusting by body mass index. CONCLUSIONS AND RELEVANCE In this cohort study, measuring physical frailty using a wrist-worn sensor during a short upper extremity test was a practical method for stratifying the risk of MAEs following revascularization for CLTI when the administration of gait-based tests is often challenging.
Background: Electrical stimulation (E-Stim) may offer a unique adjunctive treatment to heal complicated diabetic foot ulcers (DFU). Our primary goal is to examine the effectiveness of daily home-based E-Stim therapy to speed-up wound healing. Methods: Patients with chronic DFUs and mild to severe peripheral arterial disease (PAD) were recruited and randomized to either control (CG) or intervention (IG) groups. The IG received 1-hour home-based E-Stim therapy on daily basis for 4 weeks (4W). E-Stim was delivered through electrical pads placed above the ankle joint using a bio-electric stimulation technology (BEST®) platform (Tennant Biomodulator® PRO). The CG was provided with an identical but non-functional device for the same period. The primary outcome included wound area reduction at 4W from baseline (BL). Results: Thirty-eight patients were recruited and 5 were removed due to non-compliance or infection, leaving 33 participants (IG, n = 16; CG, n =17). At 4W, the IG showed a significant wound area reduction of 22% (BL: 7.4 ± 8.5 cm2 vs 4W: 5.8 ± 8.0 cm2, P = 0.002). Average of wound area was unchanged in the CG ( P = 0.982). The self-report adherence to daily home-therapy was 93.9%. Conclusions: Daily home-based E-Stim provides early results on the feasibility, acceptability, and effectiveness of E-Stim as an adjunctive therapy to speed up wound healings in patients with chronic DFU and mild to severe PAD.
Background: While numerous studies suggest the benefit of electrical stimulation (E-Stim) therapy to accelerate wound healing, the underlying mechanism of action is still debated. In this pilot study, we examined the potential effectiveness of lower extremity E-Stim therapy to improve tissue perfusion in patients with diabetic foot ulcers (DFUs). Methods: Thirty-eight patients with DFUs were recruited. Participants underwent 60-minutes of active E-Stim therapy provided on acupuncture points above the level of the ankle joint using a bio-electric stimulation technology® (BEST) platform (Tennant Biomodulator® PRO). As primary outcome, changes in perfusion in response to E-Stim were assessed by measuring skin perfusion pressure (SPP) at baseline, 30-, and 60-min during therapy. In addition, retention was assessed 10-min post-therapy. As secondary outcome, tissue oxygen saturation (SatO2) was measured using a non-invasive near-infrared camera (Snapshot NIR, KENT Imaging Inc). Results: SPP increased in response to E-Stim therapy (p = 0.02) with maximum improvement observed at 60-min (11%, p = 0.007) compared to baseline. SPP reduced at 10-min post therapy, but remained higher than baseline (9%, p = 0.1). Magnitude of improvement at 60-min was negatively correlated with baseline SPP values (r = -0.45, p = 0.01) suggesting those with lower perfusion could benefit more from E-Stim therapy. Similar trends were observed for SatO2 with statistically significant improvement for a sub-sample (n=16) with moderate-severe peripheral arterial disease (Ankle brachial index < 0.8 or > 1.4). Conclusions: This study provides early results on the feasibility and effectiveness of E-Stim therapy to improve skin perfusion and SatO2. The magnitude of benefit is higher among those with poorer skin perfusion. Results also suggest the effects of E-Stim could be washed out after stopping therapy and thus regular daily application may be required for the effective benefit for wound healing.
BackgroundIntensive care unit (ICU) prolonged immobilization may lead to lower-extremity muscle deconditioning among critically ill patients, particularly more accentuated in those with 2019 Novel Coronavirus (COVID-19) infection. Electrical stimulation (E-Stim) is known to improve musculoskeletal outcomes. This phase I double-blinded randomized controlled trial examined the safety and efficacy of lower-extremity E-Stim to prevent muscle deconditioning.MethodsCritically ill COVID-19 patients admitted to the ICU were randomly assigned to control (CG) or intervention (IG) groups. Both groups received daily E-Stim (1 h) for up to 14 days on both gastrocnemius muscles (GNMs). The device was functional in the IG and non-functional in the CG. Primary outcomes included ankle strength (Ankles) measured by an ankle-dynamometer, and GNM endurance (GNMe) in response to E-Stim assessed with surface electromyography (sEMG). Outcomes were measured at baseline, 3 and 9 days.ResultsThirty-two (IG = 16, CG = 16) lower extremities in 16 patients were independently assessed. The mean time between ICU admission and E-Stim therapy delivery was 1.8 ± 1.9 days (p = 0.29). At 3 days, the IG showed an improvement compared to the CG with medium effect sizes for Ankles (p = 0.06, Cohen’s d = 0.77) and GNMe (p = 0.06, d = 0.69). At 9 days, the IG GNMe was significantly higher than the CG (p = 0.04, d = 0.97) with a 6.3% improvement from baseline (p = 0.029). E-Stim did not alter vital signs (i.e., heart/respiratory rate, blood saturation of oxygen), showed no adverse events (i.e., pain, skin damage, discomfort), nor interfere with ICU standard of care procedures (i.e., mechanical ventilation, prone rotation).ConclusionThis study supports the safety and efficacy of early E-Stim therapy to potentially prevent deterioration of lower-extremity muscle conditions in critically ill COVID-19 patients recently admitted to the ICU. If confirmed in a larger sample, E-Stim may be used as a practical adjunctive therapy.Clinical trial registration[https://clinicaltrials.gov/], identifier [NCT04685213].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.