Signal transducer and activator of transcription (STAT) 3 is a key signalling protein engaged by a multitude of growth factors and cytokines to elicit diverse biological outcomes including cellular growth, differentiation, and survival. The complete loss of STAT3 is not compatible with life and even partial loss of function mutations lead to debilitating pathologies like hyper IgE syndrome. Conversely, augmented STAT3 activity has been reported in as many as 50% of all human tumours. The dogma of STAT3 activity posits that it is a tyrosine phosphorylated transcription factor which modulates the expression of hundreds of genes. However, the regulation and biological consequences of STAT3 activation are far more complex. In addition to tyrosine phosphorylation, STAT3 is decorated with a plethora of post-translational modifications which regulate STAT3's nuclear function in addition to its non-genomic activities. In addition to these emerging complexities in the biochemical regulation of STAT3 activity, recent studies reveal that STAT3 is either oncogenic or a tumour suppressor. This review will explore these complexities.
Objective
Human immunodeficiency virus (HIV) persistence in blood and tissue reservoirs, including the brain, is a major barrier to HIV cure and possible cause of comorbid disease. However, the size and replication competent nature of the central nervous system (CNS) reservoir is unclear. Here, we used the intact proviral DNA assay (IPDA) to provide the first quantitative assessment of the intact and defective HIV reservoir in the brain of people with HIV (PWH).
Methods
Total, intact, and defective HIV proviruses were measured in autopsy frontal lobe tissue from viremic (n = 18) or virologically suppressed (n = 12) PWH. Total or intact/defective proviruses were measured by detection of HIV pol or the IPDA, respectively, through use of droplet digital polymerase chain reaction (ddPCR). HIV‐seronegative individuals were included as controls (n = 6).
Results
Total HIV DNA was present at similar levels in brain tissues from untreated viremic and antiretroviral (ART)‐suppressed individuals (median = 22.3 vs 26.2 HIV pol copies/106 cells), reflecting a stable CNS reservoir of HIV that persists despite therapy. Furthermore, 8 of 10 viremic and 6 of 9 virally suppressed PWH also harbored intact proviruses in the CNS (4.63 vs 12.7 intact copies/106 cells). Viral reservoirs in CNS and matched lymphoid tissue were similar in the composition of intact and/or defective proviruses, albeit at lower levels in the brain. Importantly, CNS resident CD68+ myeloid cells in virally suppressed individuals harbored HIV DNA, directly showing the presence of a CNS resident HIV reservoir.
Interpretation
Our results demonstrate the first evidence for an intact, potentially replication competent HIV reservoir in the CNS of virally suppressed PWH. ANN NEUROL 2022;92:532–544
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.