In this paper, the trajectory tracking problem of a nonlinear robotic system with 3DOFs under the control signal obtained through nonlinearly constrained state spaceIterative Learning Control (ILC) methods is considered. The focus of this paper is the analysis of different control system parameters on the convergence rate of two constrained state space ILCalgorithms: Bounded Error Algorithm (BEAILC) and Constrained Output algorithm (COILC), as well as the comparison between these two algorithms through simulations. The obtained results have shown that COILC algorithm converges faster than BEAILC algorithm when compared with the same learning and feedback parameters, due to lower trajectory restrictions. Also, it has been shown that an increase in feedback gains can decrease the number of iteration terminations during the learning process, thus allowing for more of the trajectory error information to be learned from during the single iteration. Moreover, simulations have shown that the decrease in learning parameter values will increase the number of iterations required to obtain the desired tracking accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.