SNOW 3G is a stream cipher chosen by the 3rd Generation Partnership Project (3GPP) as a crypto-primitive to substitute KASUMI in case its security is compromised. SNOW 2.0 is one of the stream ciphers chosen for the ISO/IEC standard IS 18033-4. In this paper, we show that the initialization procedure of the two ciphers admits a sliding property, resulting in several sets of related-key pairs. In case of SNOW 3G, a set of 2 32 related key pairs is presented, whereas in case of SNOW 2.0, several such sets are found, out of which the largest are of size 2 64 and 2 192 for the 128-bit and 256-bit variant of the cipher, respectively. In addition to allowing related-key key recovery attacks against SNOW 2.0 with 256-bit keys, the presented properties reveal non-random behavior which yields related-key distinguishers and also questions the validity of the security proofs of protocols that are based on the assumption that SNOW 3G and SNOW 2.0 behave like perfect random functions of the key-IV.
SM3 is a hash function, designed by Xiaoyun Wang et al. and published by the Chinese Commercial Cryptography Administration Office for the use of electronic authentication service system. The design of SM3 builds upon the design of the SHA-2 hash function, but introduces additional strengthening features. In this paper, we present boomerang distinguishers for the SM3 compression function reduced to 32 steps out of 64 steps with complexity 2 14.4 , 33 steps with complexity 2 32.4 , 34 steps with complexity 2 53.1 and 35 steps with complexity 2 117.1 . Examples of zero-sum quartets for the 32-step and 33-step SM3 compression function are provided. We also point out a slide-rotational property of SM3-XOR, which exists due to the fact that constants used in the steps are not independent.
Abstract. In August 2012, the Stribog hash function was selected as the new Russian hash standard (GOST R 34.11-2012). Stribog is an AES-based primitive and is considered as an asymmetric reply to the new SHA-3. In this paper we investigate the collision resistance of the Stribog compression function and its internal cipher. Specifically, we present a message differential path for the internal block cipher that allows us to efficiently obtain a 5-round free-start collision and a 7.75 free-start near collision for the internal cipher with complexities 2 8 and 2 40 , respectively. Finally, the compression function is analyzed and a 7.75 round semi free-start collision, 8.75 and 9.75 round semi free-start near collisions are presented along with an example for 4.75 round 49 out of 64 bytes near colliding message pair.
Rabbit is a high speed scalable stream cipher with 128-bit key and a 64-bit initialization vector. It has passed all three stages of the ECRYPT stream cipher project and is a member of eSTREAM software portfolio. In this paper, we present a practical fault analysis attack on Rabbit. The fault model in which we analyze the cipher is the one in which the attacker is assumed to be able to fault a random bit of the internal state of the cipher but cannot control the exact location of injected faults. Our attack requires around 128 − 256 faults, precomputed table of size 2 41.6 bytes and recovers the complete internal state of Rabbit in about 2 38 steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.