Lithium/air batteries, based on their high theoretical specific energy, are an extremely attractive technology for electrical energy storage that could make long-range electric vehicles widely affordable. However, the impact of this technology has so far fallen short of its potential due to several daunting challenges. In nonaqueous Li/air cells, reversible chemistry with a high current efficiency over several cycles has not yet been established, and the deposition of an electrically resistive discharge product appears to limit the capacity. Aqueous cells require water-stable lithium-protection membranes that tend to be thick, heavy, and highly resistive. Both types of cell suffer from poor oxygen redox kinetics at the positive electrode and deleterious volume and morphology changes at the negative electrode. Closed Li/air systems that include oxygen storage are much larger and heavier than open systems, but so far oxygen-and OH − -selective membranes are not effective in preventing contamination of cells. In this review we discuss the most critical challenges to developing robust, high-energy Li/air batteries and suggest future research directions to understand and overcome these challenges. We predict that Li/air batteries will primarily remain a research topic for the next several years. However, if the fundamental challenges can be met, the Li/air battery has the potential to significantly surpass the energy storage capability of today's Li-ion batteries.
For storage of grid‐scale electrical energy, redox‐flow batteries (RFBs) are considered promising technologies. This paper explores the influence of electrolyte composition and ion transport on cell performance by using an integrated approach of experiments and cost modeling. In particular, the impact of the area‐specific resistance on system capability is elucidated for the hydrogen/bromine RFB. The experimental data demonstrate very good performance with 1.46 W cm−2 peak power and 4 A cm−2 limiting current density at ambient conditions for an optimal cell design and reactant concentrations. The data and cost model results show that higher concentrations of RFB reactants do not necessarily result in lower capital cost as there is a tradeoff between cell performance and storage (tank) requirements. In addition, the discharge time and overall efficiency demonstrate nonlinear effects on system cost, with a 3 to 4 hour minimum discharge time showing a key transition to a plateau in terms of cost for typical RFB systems. The presented results are applicable to many different RFB chemistries and technologies and highlight the importance of ohmic effects and associated area‐specific resistance on RFB viability.
There is a strong need for advanced control methods in battery management systems, especially in the plug-in hybrid and electric vehicles sector, due to cost and safety issues of new high-power battery packs and high-energy cell design. Limitations in computational speed and available memory require the use of very simple battery models and basic control algorithms, which in turn result in suboptimal utilization of the battery. This work investigates the possible use of optimal control strategies for charging. We focus on the minimumtime charging problem, where different constraints on internal battery states are considered. Based on features of the openloop optimal charging solution, we propose a simple one-step predictive controller, which is shown to recover the time-optimal solution, while being feasible for real-time computations. We present simulation results suggesting a decrease in charging time by 50% compared to the conventional constant-current / constant-voltage method for lithium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.