G proteins mediate signals from membrane G protein coupled receptors to the cell interior, evoking significant regulation of cell physiology. The cytoskeleton contributes to cell morphology, motility, division, and transport functions. This review will discuss the interplay between heterotrimeric G protein signaling and elements of the cytoskeleton. Also described and discussed will be the interplay between tubulin and G proteins that results in atypical modulation of signaling pathways and cytoskeletal dynamics. This will be extended to describe how tubulin and G proteins act in concert to influence various aspects of cellular behavior.
Spinocerebellar ataxia type 1 (SCA1) is an incurable neurodegenerative disease caused by a pathogenic glutamine repeat expansion in the protein ataxin-1 (ATXN1). One likely mechanism mediating pathogenesis is excessive transcriptional repression induced by the expanded ATXN-1. Because ATXN1 binds HDAC3, a Class I histone deacetylase (HDAC) that we have found to be required for ATXN1-induced transcriptional repression, we tested whether genetically depleting HDAC3 improves the phenotype of the SCA1 knock-in mouse (SCA1(154Q/2Q)), the most physiologically relevant model of SCA1. Given that HDAC3 null mice are embryonic lethal, we used for our analyses a combination of HDAC3 haploinsufficient and Purkinje cell (PC)-specific HDAC3 null mice. Although deleting a single allele of HDAC3 in the context of SCA1 was insufficient to improve cerebellar and cognitive deficits of the disease, a complete loss of PC HDAC3 was highly deleterious both behaviorally, with mice showing early onset ataxia, and pathologically, with progressive histologic evidence of degeneration. Inhibition of HDAC3 may yet have a role in SCA1 therapy, but our study provides cautionary evidence that this approach could produce untoward effects. Indeed, the neurotoxic consequences of HDAC3 depletion could prove relevant, wherever pharmacologic inhibition of HDAC3 is being contemplated, in disorders ranging from cancer to neurodegeneration.
Objective
Poor prognosis of sepsis is associated with bacterial lipopolysaccharide (LPS)-induced intravascular inflammation, microvascular thrombosis, thrombocytopenia, and disseminated intravascular coagulation. Platelets are critical for thrombosis, and there have been increasing evidence of the importance of platelets in endotoxemia. The platelet adhesion receptor, the glycoprotein Ib-IX complex (GPIb-IX), mediates platelet adhesion to inflammatory vascular endothelium and exposed subendothelium. Thus, we have investigated the role of GPIb-IX in LPS-induced platelet adhesion, thrombosis and thrombocytopenia.
Approach and Results
LPS-induced mortality is significantly decreased in mice expressing a functionally deficient mutant of GPIbα. Furthermore, we have developed a micellar peptide inhibitor, MPαC, which selectively inhibits the VWF-binding function of GPIb-IX and GPIb-IX-mediated platelet adhesion under flow without affecting GPIb-IX-independent platelet activation. MPαC inhibits platelet adhesion to LPS-stimulated endothelial cells in vitro and alleviates LPS-induced thrombosis in glomeruli in mice. Importantly, MPαC reduces mortality in LPS-challenged mice, suggesting a protective effect of this inhibitor during endotoxemia. Interestingly, MPαC, but not the integrin antagonist, Integrilin, alleviated LPS-induced thrombocytopenia.
Conclusion
These data indicate an important role for the platelet adhesion receptor GPIb-IX in LPS-induced thrombosis and thrombocytopenia, and suggest the potential of targeting GPIb as an anti-platelet strategy in managing endotoxemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.