We investigate the magnetism of a previously unexplored distorted spin-1/2 kagome model consisting of three symmetry-inequivalent nearest-neighbor antiferromagnetic Heisenberg couplings J⬡, J, and $$J^{\prime}$$ J ′ , and uncover a rich ground state phase diagram even at the classical level. Using analytical arguments and numerical techniques we identify a collinear $$\overrightarrow{Q}=0$$ Q → = 0 magnetic phase, two unusual non-collinear coplanar $$\overrightarrow{Q}=(1/3,1/3)$$ Q → = ( 1 / 3 , 1 / 3 ) phases and a classical spin liquid phase with a degenerate manifold of non-coplanar ground states, resembling the jammed spin liquid phase found in the context of a bond-disordered kagome antiferromagnet. We further show with density functional theory calculations that the recently synthesized Y-kapellasite Y3Cu9(OH)19Cl8 is a realization of this model and predict its ground state to lie in the region of $$\overrightarrow{Q}=(1/3,1/3)$$ Q → = ( 1 / 3 , 1 / 3 ) order, which remains stable even after the inclusion of quantum fluctuation effects within variational Monte Carlo and pseudofermion functional renormalization group. The presented model opens a new direction in the study of kagome antiferromagnets.
Motivated by reports of metallic behavior in the recently synthesized RuI3, in contrast to the Mott-insulating nature of the actively discussed α-RuCl3, as well as RuBr3, we present a detailed comparative analysis of the electronic and magnetic properties of this family of trihalides. Using a combination of first-principles calculations and effective-model considerations, we conclude that RuI3, similarly to the other two members, is most probably on the verge of a Mott insulator, but with much smaller magnetic moments and strong magnetic frustration. We predict the ideal pristine crystal of RuI3 to have a nearly vanishing conventional nearest-neighbor Heisenberg interaction and to be a quantum spin liquid candidate of a possibly different kind than the Kitaev spin liquid. In order to understand the apparent contradiction to the reported resistivity ρ, we analyze the experimental evidence for all three compounds and propose a scenario for the observed metallicity in existing samples of RuI3. Furthermore, for the Mott insulator RuBr3, we obtain a magnetic Hamiltonian of a similar form to that in the much-discussed α-RuCl3 and show that this Hamiltonian is in agreement with experimental evidence in RuBr3.
Due to the small photon momentum, optical spectroscopy commonly probes magnetic excitations only at the center of the Brillouin zone; however, there are ways to override this restriction. In case of the distorted kagome quantum magnet Y‐kapellasite, Y3Cu9(OH)19Cl8, under scrutiny here, the spin (magnon) density of states (SDOS) can be accessed over the entire Brillouin zone through three‐center magnon excitations. This mechanism is aided by the three different magnetic sublattices and strong short‐range correlations in the distorted kagome lattice. The results of THz time‐domain experiments agree remarkably well with linear spin‐wave theory (LSWT). Relaxing the conventional zone‐center constraint of photons gives a new aspect to probe magnetism in matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.