BACKGROUND Alterations in hedgehog signaling are implicated in the pathogenesis of basal-cell carcinoma. Although most basal-cell carcinomas are treated surgically, no effective therapy exists for locally advanced or metastatic basal-cell carcinoma. A phase 1 study of vismodegib (GDC-0449), a first-in-class, small-molecule inhibitor of the hedgehog pathway, showed a 58% response rate among patients with advanced basal-cell carcinoma. METHODS In this multicenter, international, two-cohort, nonrandomized study, we enrolled patients with metastatic basal-cell carcinoma and those with locally advanced basal-cell carcinoma who had inoperable disease or for whom surgery was inappropriate (because of multiple recurrences and a low likelihood of surgical cure, or substantial anticipated disfigurement). All patients received 150 mg of oral vismodegib daily. The primary end point was the independently assessed objective response rate; the primary hypotheses were that the response rate would be greater than 20% for patients with locally advanced basal-cell carcinoma and greater than 10% for those with metastatic basal-cell carcinoma. RESULTS In 33 patients with metastatic basal-cell carcinoma, the independently assessed response rate was 30% (95% confidence interval [CI], 16 to 48; P = 0.001). In 63 patients with locally advanced basal-cell carcinoma, the independently assessed response rate was 43% (95% CI, 31 to 56; P<0.001), with complete responses in 13 patients (21%). The median duration of response was 7.6 months in both cohorts. Adverse events occurring in more than 30% of patients were muscle spasms, alopecia, dysgeusia (taste disturbance), weight loss, and fatigue. Serious adverse events were reported in 25% of patients; seven deaths due to adverse events were noted. CONCLUSIONS Vismodegib is associated with tumor responses in patients with locally advanced or metastatic basal-cell carcinoma. (Funded by Genentech; Erivance BCC ClinicalTrials.gov number, NCT00833417.)
The immunosuppressant rapamycin interferes with G1-phase progression in lymphoid and other cell types by inhibiting the function of the mammalian target of rapamycin (mTOR). mTOR was determined to be a terminal kinase in a signaling pathway that couples mitogenic stimulation to the phosphorylation of the eukaryotic initiation factor (eIF)-4E-binding protein, PHAS-I. The rapamycin-sensitive protein kinase activity of mTOR was required for phosphorylation of PHAS-I in insulin-stimulated human embryonic kidney cells. mTOR phosphorylated PHAS-I on serine and threonine residues in vitro, and these modifications inhibited the binding of PHAS-I to eIF-4E. These studies define a role for mTOR in translational control and offer further insights into the mechanism whereby rapamycin inhibits G1-phase progression in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.