Epigenetic studies relied so far on correlations between epigenetic marks and gene expression pattern. Technologies developed for epigenome editing now enable direct study of functional relevance of precise epigenetic modifications and gene regulation. The reversible nature of epigenetic modifications, including DNA methylation, has been already exploited in cancer therapy for remodeling the aberrant epigenetic landscape. However, this was achieved non-selectively using epigenetic inhibitors. Epigenetic editing at specific loci represents a novel approach that might selectively and heritably alter gene expression. Here, we developed a CRISPR-Cas9-based tool for specific DNA methylation consisting of deactivated Cas9 (dCas9) nuclease and catalytic domain of the DNA methyltransferase DNMT3A targeted by co–expression of a guide RNA to any 20 bp DNA sequence followed by the NGG trinucleotide. We demonstrated targeted CpG methylation in a ∼35 bp wide region by the fusion protein. We also showed that multiple guide RNAs could target the dCas9-DNMT3A construct to multiple adjacent sites, which enabled methylation of a larger part of the promoter. DNA methylation activity was specific for the targeted region and heritable across mitotic divisions. Finally, we demonstrated that directed DNA methylation of a wider promoter region of the target loci IL6ST and BACH2 decreased their expression.
The Toc core complex consists of the pore-forming Toc75 and the GTPases Toc159 and Toc34. We confirm that the receptor form of Toc159 is integrated into the membrane. The association of Toc34 to Toc75/Toc159 is GTP dependent and enhanced by preprotein interaction. The N-terminal half of the pSSU transit peptide interacts with high affinity with Toc159, whereas the C-terminal part stimulates its GTP hydrolysis. The phosphorylated C-terminal peptide of pSSU interacts strongly with Toc34 and therefore inhibits binding and translocation of pSSU into Toc proteoliposomes. In contrast, Toc159 recognises only the dephosphorylated forms. The N-terminal part of the pSSU presequence does not influence binding to the Toc complex, but is able to block import into proteoliposomes through its interaction with Toc159. We developed a model of differential presequence recognition by Toc34 and Toc159.
Epigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2 and TXK) in an independent cohort. Using paired genetic and epigenetic data, we delineate methylation quantitative trait loci; VMP1/microRNA-21 methylation associates with two polymorphisms in linkage disequilibrium with a known IBD susceptibility variant. Separated cell data shows that IBD-associated hypermethylation within the TXK promoter region negatively correlates with gene expression in whole-blood and CD8+ T cells, but not other cell types. Thus, site-specific DNA methylation changes in IBD relate to underlying genotype and associate with cell-specific alteration in gene expression.
-Barrel-shaped channels of the Omp85 family are involved in the translocation or assembly of proteins of bacterial, mitochondrial, and plastidic outer membranes. We have compared these proteins to understand the evolutionary development of the translocators. We have demonstrated that the proteins from proteobacteria and mitochondria have a pore diameter that is at least five times smaller than found for the Omp85 in cyanobacteria and plastids. This finding can explain why Omp85 from cyanobacteria (but not the homologous protein from proteobacteria) was remodeled to become the protein translocation pore after endosymbiosis. Further, the pore-forming region of the Omp85 proteins is restricted to the C terminus. Based on a phylogenetic analysis we have shown that the pore-forming domain displays a different evolutionary relationship than the N-terminal domain. In line with this, the affinity of the N-terminal domain to the C-terminal region of the Omp85 from plastids and cyanobacteria differs, even though the N-terminal domain is involved in gating of the pore in both groups. We have further shown that the N-terminal domain of nOmp85 takes part in homo-oligomerization. Thereby, the differences in the phylogeny of the two domains are explained by different functional constraints acting on the regions. The poreforming domain, however, is further divided into two functional regions, where the distal C terminus itself forms a dimeric pore. Based on functional and phylogenetic analysis, we suggest an evolutionary scenario that explains the origin of the contemporary translocon.Polypeptide transport and assembly of proteins into or across the outer membrane of endosymbiotic organelles or Gram-negative bacteria depend on -barrel-shaped channels (1-4). One class of these proteins is composed of polypeptide-transporting -barrel (PTB) 6 channels, whose topology was determined by modeling (5-7). PTBs of recent interest are, e.g. outer membrane proteins (which secrete adhesins such as hemagglutinin) (8, 9) and bacterial (1, 7, 10 -12), mitochondrial (Tob55/Sam50) (5, 13, 14), and chloroplast outer membrane proteins (Toc75) (15) of the Omp85 family. The PTBs are partitioned into two functional categories, namely in translocation of precursor proteins across the membrane and in the assembly of outer membrane proteins (3). Furthermore, comparison between chloroplastic, mitochondrial, and bacterial Omp85 protein sequences revealed a high similarity of these PTBs (14,16,17).The PTB Toc75 forms a complex with Toc34, Toc64, and Toc159 (3). A precursor protein-binding site at Toc75 (15, 18), together with the action of Toc159 (19), facilitates the translocation of precursor proteins across the membrane. In contrast, the Omp85 proteins from Neisseria meningitidis, Escherichia coli, and mitochondria are involved in the assembly of outer membrane proteins (1,5,7,(11)(12)(13)(14). As found for Toc75, the mitochondrial PTB is a component of a larger complex with Mas37 (20, 13) and Tob38/Sam35 (21,22).Recently, it was demonstrated that t...
In a retrospective analysis of plasma samples from patients with CD or UC, we associated levels of IgG Fc-glycosylation with disease (compared to controls) and its clinical features. These findings could increase our understanding of mechanisms of CD and UC pathogenesis and be used to develop diagnostics or guide treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.