A numerical study of transient three-dimensional heat conduction problem with a moving source is presented. For numerical solution Douglas-Gunn alternating direction implicit method is applied and for the moving heat source flux distribution Gaussian function is used. An influence on numerical solution of input parameters figuring in flux boundary conditions is examined. This include parameters appearing inGaussian function and heat transfer coefficient from free convection boundaries. Sensitivity of cooling time from 800 to 500 °C with respect to input parameters is also tested.
In the development of robots and machine tools, in addition to conventional and serial structures, parallel mechanism-based kinematic structures have been used over a longer period of time. Aside from a number of advantages, the irregular shape and relatively small dimensions of the workspace formed by parallel mechanisms rank among the major weaknesses of their application. Accordingly, this fact has to be taken into consideration in the process of designing parallel mechanism-based robots or machine tools. This paper describes the categorization of criteria for the conceptual design of parallel mechanism-based robots or machine tools, resulting from workspace analysis as well as the procedure of their defining. Furthermore, it also presents the designing methodology that was implemented into the program for the creation of a robot or machine tool space model and the optimization of the resulting solution. For verification of the criteria and the programme suite, three common (conceptually different) mechanisms with a similar mechanical structure and kinematic characteristics were used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.