Equation of state of strange quark matter (SQM) in a nonuniform magnetic field is studied within the phenomenological MIT bag model under the charge neutrality and beta equilibrium conditions, relevant to the interior of strange quark stars. The spatial dependence of the magnetic field strength is modeled by the dependence on the baryon chemical potential. The total energy density, longitudinal and transverse pressures in magnetized SQM are found as functions of the baryon chemical potential. It is clarified that the central magnetic field strength in a strange quark star is bound from above by the value at which the derivative of the longitudinal pressure with respect to the baryon chemical potential vanishes first somewhere in the interior of a star under varying the central field. Above this upper bound, the instability along the magnetic field is developed in magnetized SQM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.