Chronic kidney disease–mineral and bone disorder is one of the complications associated with chronic kidney disease. About 10–50% of patients following kidney transplantation have persistent hyperparathyroidism. Hypercalcaemic hyperparathyroidism has a negative impact on the kidney transplant outcome; therefore, it requires treatment. The data regarding the treatment of persistent hyperparathyroidism provided in scientific publications are divergent and contradictory. Therefore, the aim of our systematic review was to evaluate the efficacy of persistent hyperparathyroidism treatment in patients following kidney transplantation. The Cochrane, PubMed, and Scopus databases were browsed independently by two authors. The search strategy included controlled vocabulary and keywords. The effectiveness of calcitriol, paricalcitol, cinacalcet, and parathyroidectomy was compared and analysed. The mean calcium and parathormone (PTH) concentrations per patient in the group of paricalcitol increased by 1.27% and decreased by 35.14% (n = 248); in the group of cinacalcet decreased by 12.09% and 32.16% (n = 368); and in the group of parathyroidectomy decreased by 19.06% and 86.49% (n = 15) at the end of the study compared to the baseline (n = 244, n = 342 and n = 15), respectively. Paricalcitol, cinacalcet, and parathyroidectomy decreased the intact PTH level. Cinacalcet and parathyroidectomy lowered calcium levels in renal transplant patients with hypercalcaemia. Conversely, paricalcitol increased the serum calcium concentration. Cinacalcet seems to be a good candidate in the treatment of post-transplant hyperparathyroidism.
Tacrolimus is an immunosuppressive calcineurin inhibitor used to prevent rejection in allogeneic organ transplant recipients, such as kidney, liver, heart or lung. It is metabolized in the liver, involving the cytochrome P450 (CYP3A4) isoform CYP3A4, and is characterized by a narrow therapeutic window, dose-dependent toxicity and high inter-individual and intra-individual variability. In view of the abovementioned facts, the aim of the study is to present selected interactions between tacrolimus and the commonly used dietary supplements, herbs and food. The review was based on the available scientific literature found in the PubMed, Scopus and Cochrane databases. An increase in the serum concentration of tacrolimus can be caused by CYP3A4 inhibitors, such as grapefruit, pomelo, clementine, pomegranate, ginger and turmeric, revealing the side effects of this drug, particularly nephrotoxicity. In contrast, CYP3A4 inducers, such as St. John’s Wort, may result in a lack of therapeutic effect by reducing the drug concentration. Additionally, the use of Panax ginseng, green tea, Schisandra sphenanthera and melatonin in patients receiving tacrolimus is highly controversial. Therefore, since alternative medicine constitutes an attractive treatment option for patients, modern healthcare should emphasize the potential interactions between herbal medicines and synthetic drugs. In fact, each drug or herbal supplement should be reported by the patient to the physician (concordance) if it is taken in the course of immunosuppressive therapy, since it may affect the pharmacokinetic and pharmacodynamic parameters of other preparations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.