The topological color code and the toric code are two leading candidates for realizing fault-tolerant quantum computation. Here we show that the color code on a d-dimensional closed manifold is equivalent to multiple decoupled copies of the d-dimensional toric code up to local unitary transformations and adding or removing ancilla qubits. Our result not only generalizes the proven equivalence for d = 2, but also provides an explicit recipe of how to decouple independent components of the color code, highlighting the importance of colorability in the construction of the code. Moreover, for the d-dimensional color code with d 1 + boundaries of d 1 + distinct colors, we find that the code is equivalent to multiple copies of the d-dimensional toric code which are attached along a d( 1) − -dimensional boundary. In particular, for d = 2, we show that the (triangular) color code with boundaries is equivalent to the (folded) toric code with boundaries. We also find that the d-dimensional toric code admits logical non-Pauli gates from the dth level of the Clifford hierarchy, and thus saturates the bound by Bravyi and König. In particular, we show that the logical d-qubit control-Z gate can be fault-tolerantly implemented on the stack of d copies of the toric code by a local unitary transformation.
We provide a simplified yet rigorous presentation of the ideas from Bombín's paper (arXiv:1311.0879v3). Our presentation is self-contained, and assumes only basic concepts from quantum error correction. We provide an explicit construction of a family of color codes in arbitrary dimensions and describe some of their crucial properties. Within this framework, we explicitly show how to transversally implement the generalized phase gate R n = diag(1,e 2πi/2 n ), which deviates from the method in the aforementioned paper, allowing an arguably simpler proof. We describe how to implement the Hadamard gate H fault tolerantly using code switching. In three dimensions, this yields, together with the transversal controlled-NOT (CNOT), a fault-tolerant universal gate set {H,CNOT,R 3 } without state distillation.
The color code is a topological quantum error-correcting code supporting a variety of valuable faulttolerant logical gates. Its two-dimensional version, the triangular color code, may soon be realized with currently available superconducting hardware despite constrained qubit connectivity. To guide this experimental effort, we study the storage threshold of the triangular color code against circuitlevel depolarizing noise. First, we adapt the Restriction Decoder to the setting of the triangular color code and to phenomenological noise. Then, we propose a fault-tolerant implementation of the stabilizer measurement circuits, which incorporates flag qubits. We show how information from flag qubits can be used in an efficient and scalable way with the Restriction Decoder to maintain the effective distance of the code. We numerically estimate the threshold of the triangular color code to be 0.2%, which is competitive with the thresholds of other topological quantum codes. We also prove that 1-flag stabilizer measurement circuits are sufficient to preserve the full code distance, which may be used to find simpler syndrome extraction circuits of the color code. OPEN ACCESS RECEIVED
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.