BackgroundThe last 5 years’ studies using next-generation sequencing provided evidences that many types of solid tumors present spatial and temporal genetic heterogeneity and are composed of multiple populations of genetically distinct subclones that evolve over time following a pattern of branched evolution. The evolutionary nature of cancer has been proposed as the major contributor to drug resistance and treatment failure. In this review, we present the current state of knowledge about the clonal evolution of high-grade serous ovarian cancer and discuss the challenge that clonal evolution poses for efforts to achieve an optimal cancer control.MethodsA systemic search of peer-reviewed articles published between August 2007 and October 2016 was performed using PUBMED and Google Scholar database.Results and conclusionsRecent studies using next-generation sequencing have allowed us to look inside the evolutionary nature of high-grade serous ovarian cancer, which in the light of current evidence can explain the relapsing course of the disease frequently observed in the clinical practice. Since only minimal improvement in the survival of patients treated with standard therapy has been observed in the last decade, novel molecular targeted therapies are of great interest in high-grade serous ovarian cancer. However, both spatial and temporal intratumoral genetic heterogeneity is a major challenge for personalized medicine, and greater knowledge of the molecular rules that drive tumor evolution through space and time is required to achieve a long-term clinical benefit from personalized therapy.
Richter syndrome (RS) is recognized as the development of a secondary and aggressive lymphoma during the clinical course of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). Most of such histological transformations are from RS to diffuse large B-cell lymphoma (DLBCL-RS, 90%) and Hodgkin’s lymphoma (HL-RS, 10%). Histopathological examination is a prerequisite for diagnosis. It is crucial to assess the relationship between the RS clone and the underlying CLL/SLL because clonally related DLBCL-RS has a poor outcome, while clonally unrelated cases have a prognosis similar to de novo DLBCL. An anti-CD20 antibody-based immunochemotherapy is hitherto the frontline treatment of choice for DLBCL-RS; nonetheless, the results are unsatisfactory. Allogeneic stem cell transplantation should be offered to younger and fit patients as a consolidative treatment; however, the majority of the patients may not be qualified for this procedure. The HL-RS transformation has better outcomes than those of DLBCL-RS and can effectively be treated by the adriamycin, bleomycin, vinblastine, and dacarbazine regimen. Although novel agents are currently being investigated for RS, immunochemotherapy nevertheless remains a standard treatment for DLBCL-RS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.