A terahertz (THz) imaging system based on narrow band microbolometer sensors (NBMS) and a novel diffractive lens was developed for spectroscopic microscopy applications. The frequency response characteristics of the THz antenna-coupled NBMS were determined employing Fourier transform spectroscopy. The NBMS was found to be a very sensitive frequency selective sensor which was used to develop a compact all-electronic system for multispectral THz measurements. This system was successfully applied for principal components analysis of optically opaque packed samples. A thin diffractive lens with a numerical aperture of 0.62 was proposed for the reduction of system dimensions. The THz imaging system enhanced with novel optics was used to image for the first time non-neoplastic and neoplastic human colon tissues with close to wavelength-limited spatial resolution at 584 GHz frequency. The results demonstrated the new potential of compact RT THz imaging systems in the fields of spectroscopic analysis of materials and medical diagnostics.
Resonant THz antenna-coupled micro-bolometers are considered as a potential candidates for room temperature THz imaging, as well as spectroscopic applications. Micromachining technology is found to be well-suitable to fabricate a micro-meter bolometer sensor suitable for MEMS implementation. The sensitivity of the sensor is determined to be up to 1000V/W and the noise equivalent power (NEP) -is down to 5pW /√Hz. The sensor parameters are designed to be easily implemented with a low cost standard preamplifier array which increases the pixel sensitivity to 10 6 V/W without compromising the noise equivalent power.
Terahertz (THz) imaging and spectroscopy set-ups require fine optical alignment or precise control of spatial mode profile. We demonstrate universal, convenient and easy-to-use imaging—resonant and broadband antenna coupled ultrasensitive titanium-based—dedicated to accurately adjust and control spatial mode profiles without additional focusing optical components of weak power THz sources. Versatile operation of the devices is shown using different kinds of THz—electronic multiplier sources, optical THz mixer-based frequency domain and femtosecond optoelectronic THz time-domain spectrometers as well as optically pumped molecular THz laser. Features of the microbolometers within 0.15–0.6 THz range are exposed and discussed, their ability to detect spatial mode profiles beyond the antennas resonances, up to 2.52 THz, are explored. Polarization-sensitive mode control possibilities are examined in details. The suitability of the resonant antenna-coupled microbolometers to resolve low-absorbing objects at 0.3 THz is revealed via direct, dark field and phase contrast imaging techniques as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.