Electronic structure, thermodynamic stability and ligand properties in LRh(CO)2Cl complexes of a series of N-heterocyclic carbenes (NHCs) were studied at the DFT level. The systems under study are: imidazolin-2-ylidene (1), imidazolidin-2-ylidene (2), cyclic(alkyl)(amino)carbene (CAAC, 3), pyrazolin-3-ylidene (4), pyridin-2-ylidene (5), and pyridin-4-ylidene (6). The main structural feature influencing the properties of these species is the number of nitrogen atoms at the ylidene carbon. A decrease of the number of nitrogen atoms on the one hand leads to an increase in donor ability and ligand-to-metal bond strength, but lowers the stability of the NHC on the other hand. The number of nitrogen atoms can be taken as a key parameter for the classification of carbenes into 2N-NHC, 1N-NHC and r-NHC (r = remote).
A series of six- and seven-membered expanded-ring N-heterocyclic carbene (er-NHC) gold(I) complexes has been synthesized using different synthetic approaches. Complexes with weakly coordinating anions [(er-NHC)AuX] (X(-) = BF4(-), NTf2(-), OTf(-)) were generated in solution. According to their (13)C NMR spectra, the ionic character of the complexes increases in the order X(-) = Cl(-) < NTf2(-) < OTf(-) < BF4(-). Additional factors for stabilization of the cationic complexes are expansion of the NHC ring and the attachment of bulky substituents at the nitrogen atoms. These er-NHCs are bulkier ligands and stronger electron donors than conventional NHCs as well as phosphines and sulfides and provide more stabilization of [(L)Au(+)] cations. A comparative study has been carried out of the catalytic activities of five-, six-, and seven-membered carbene complexes [(NHC)AuX], [(Ph3 P)AuX], [(Me2S)AuX], and inorganic compounds of gold in model reactions of indole and benzofuran synthesis. It was found that increased ionic character of the complexes was correlated with increased catalytic activity in the cyclization reactions. As a result, we developed an unprecedentedly active monoligand cationic [(THD-Dipp)Au]BF4 (1,3-bis(2,6-diisopropylphenyl)-3,4,5,6-tetrahydrodiazepin-2-ylidene gold(I) tetrafluoroborate) catalyst bearing seven-membered-ring carbene and bulky Dipp substituents. Quantitative yields of cyclized products were attained in several minutes at room temperature at 1 mol % catalyst loadings. The experimental observations were rationalized and fully supported by DFT calculations.
A new type of eight-membered ring N-heterocyclic carbene (NHC) bearing a rigid naphthalene moiety in the backbone is reported for the first time. Stereoelectronic properties of 4,5-dihydro-1H-naphtho[1,8-ef][1,3]diazocin-3(2H)-ylidene (NaphtDHD) and smaller ring NHCs were theoretically studied at the DFT level. Amidinium salts were prepared from corresponding amidines and dibromides. Free carbene NaphtDHD-Dipp (Dipp = 2,6-diisopropylphenyl) was generated in solution by treatment of the corresponding salt with LiHMDS. It is stable in solution at low temperatures, while decomposing rapidly at room temperature. Silver(i) and copper(i) complexes were synthesized and structurally characterized in the solid state. The copper(i) complex [(NaphtDHD-Mes)CuBr] (Mes = mesityl, 2,4,6-trimethylphenyl) exhibits high catalytic activity in alkyne-azide cycloaddition (CuAAC) reaction under solvent-free conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.