We propose a numerical technique for parameter inference in Markov models of biological processes. Based on time-series data of a process we estimate the kinetic rate constants by maximizing the likelihood of the data. The computation of the likelihood relies on a dynamic abstraction of the discrete state space of the Markov model which successfully mitigates the problem of state space largeness. We compare two variants of our method to state-of-the-art, recently published methods and demonstrate their usefulness and efficiency on several case studies from systems biology.
Recent experimental imaging techniques are able to tag and count molecular populations in a living cell. From these data mathematical models are inferred and calibrated. If small populations are present, discrete-state stochastic models are widely-used to describe the discreteness and randomness of molecular interactions. Based on time-series data of the molecular populations, the corresponding stochastic reaction rate constants can be estimated. This procedure is computationally very challenging, since the underlying stochastic process has to be solved for different parameters in order to obtain optimal estimates. Here, we focus on the maximum likelihood method and estimate rate constants, initial populations and parameters representing measurement errors.
This paper presents an on-the-fly uniformization technique for the analysis of time-inhomogeneous Markov population models. This technique is applicable to models with infinite state spaces and unbounded rates, which are, for instance, encountered in the realm of biochemical reaction networks. To deal with the infinite state space, we dynamically maintain a finite subset of the states where most of the probability mass is located. This approach yields an under-approximation of the original, infinite system. We present experimental results to show the applicability of our technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.