Abstract. We consider the symmetry properties of an integro-differential multidimensional Gross-Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semiclassically reduced nonlocal Gross-Pitaevskii equation, which can be treated as a nearly linear equation, to determine the principal term of the semiclassical asymptotic solution. Our main result is an approach which allows one to construct a class of symmetry operators for the reduced Gross-Pitaevskii equation. These symmetry operators are determined by linear relations including intertwining operators and additional algebraic conditions. The basic ideas are illustrated with a 1D reduced Gross-Pitaevskii equation. The symmetry operators are found explicitly, and the corresponding families of exact solutions are obtained.
For a nonlocal Gross-Pitaevskii operator, quasi-energy spectral series have been constructed accurate to O( 3/2 ).These series correspond to the closed phase trajectories of the Hamilton-Ehrenfest system, which are stable in a linear approximation. The corresponding monodromy operator has been constructed accurate toin the class of trajectory-coherent functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.